Cargando…

Markov chains : analytic and Monte Carlo computations /

Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Graham, C. (Carl)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex : Wiley-Dunod, 2014.
Colección:Wiley series in probability and statistics.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn865574978
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 131217s2014 enk ob 001 0 eng
010 |a  2013050092 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d MHW  |d YDXCP  |d DG1  |d RECBK  |d CUI  |d OCLCF  |d OCLCO  |d EBLCP  |d HEBIS  |d DEBSZ  |d UMI  |d OCLCQ  |d DEBBG  |d DG1  |d LIP  |d ZCU  |d MERUC  |d OCLCQ  |d CEF  |d INT  |d VT2  |d AU@  |d OCLCQ  |d U3W  |d OCLCQ  |d UAB  |d DKC  |d OCLCQ  |d UKAHL  |d STF  |d UX1  |d OL$  |d OCLCQ  |d DLC  |d INARC  |d OCLCO  |d OCLCQ 
066 |c (S 
019 |a 877769913  |a 918862198  |a 992889012  |a 1100369247  |a 1101723115  |a 1148066693 
020 |a 9781118882696  |q (ePub) 
020 |a 1118882695  |q (ePub) 
020 |a 9781118881873  |q (Adobe PDF) 
020 |a 1118881877  |q (Adobe PDF) 
020 |a 9781118881866  |q (electronic bk.) 
020 |a 1118881869  |q (electronic bk.) 
020 |a 1118517075 
020 |a 9781118517079 
020 |z 9781118517079  |q (cloth) 
029 1 |a AU@  |b 000052339525 
029 1 |a AU@  |b 000052922819 
029 1 |a CHBIS  |b 010442067 
029 1 |a CHNEW  |b 000942641 
029 1 |a CHVBK  |b 480229333 
029 1 |a DEBBG  |b BV043020117 
029 1 |a DEBBG  |b BV043396432 
029 1 |a DEBBG  |b BV043891626 
029 1 |a DEBSZ  |b 405713614 
029 1 |a DEBSZ  |b 449424014 
029 1 |a DEBSZ  |b 455696845 
029 1 |a GBVCP  |b 882846523 
029 1 |a NZ1  |b 15592094 
029 1 |a NZ1  |b 15906892 
029 1 |a ZWZ  |b 18391032X 
035 |a (OCoLC)865574978  |z (OCoLC)877769913  |z (OCoLC)918862198  |z (OCoLC)992889012  |z (OCoLC)1100369247  |z (OCoLC)1101723115  |z (OCoLC)1148066693 
037 |a CL0500000628  |b Safari Books Online 
042 |a pcc 
050 0 0 |a QA274.7 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 0 |a 519.2/33  |2 23 
049 |a UAMI 
100 1 |a Graham, C.  |q (Carl) 
245 1 0 |a Markov chains :  |b analytic and Monte Carlo computations /  |c Carl Graham. 
264 1 |a Chichester, West Sussex :  |b Wiley-Dunod,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 0 |a Wiley series in probability and statistics. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a Markov Chains: Analytic and Monte Carlo Computations introduces the main notions related to Markov chains and provides explanations on how to characterize, simulate, and recognize them. Starting with basic notions, this book leads progressively to advanced and recent topics in the field, allowing the reader to master the main aspects of the classical theory. This book also features: Numerous exercises with solutions as well as extended case studies. A detailed and rigorous presentation of Markov chains with discrete time and state space. 
505 0 |6 880-01  |a Cover; Title Page; Copyright; Contents; Preface; List of Figures; Nomenclature; Introduction; Chapter 1 First steps; 1.1 Preliminaries; 1.2 First properties of Markov chains; 1.2.1 Markov chains, finite-dimensional marginals, and laws; 1.2.2 Transition matrix action and matrix notation; 1.2.3 Random recursion and simulation; 1.2.4 Recursion for the instantaneous laws, invariant laws; 1.3 Natural duality: algebraic approach; 1.3.1 Complex eigenvalues and spectrum; 1.3.2 Doeblin condition and strong irreducibility; 1.3.3 Finite state space Markov chains; 1.4 Detailed examples. 
505 8 |a 2.3 Detailed examples2.3.1 Gambler's ruin; 2.3.2 Unilateral hitting time for a random walk; 2.3.3 Exit time from a box; 2.3.4 Branching process; 2.3.5 Word search; Exercises; Chapter 3 Transience and recurrence; 3.1 Sample paths and state space; 3.1.1 Communication and closed irreducible classes; 3.1.2 Transience and recurrence, recurrent class decomposition; 3.1.3 Detailed examples; 3.2 Invariant measures and recurrence; 3.2.1 Invariant laws and measures; 3.2.2 Canonical invariant measure; 3.2.3 Positive recurrence, invariant law criterion; 3.2.4 Detailed examples; 3.3 Complements. 
505 8 |a 3.3.1 Hitting times and superharmonic functions3.3.2 Lyapunov functions; 3.3.3 Time reversal, reversibility, and adjoint chain; 3.3.4 Birth-and-death chains; Exercises; Chapter 4 Long-time behavior; 4.1 Path regeneration and convergence; 4.1.1 Pointwise ergodic theorem, extensions; 4.1.2 Central limit theorem for Markov chains; 4.1.3 Detailed examples; 4.2 Long-time behavior of the instantaneous laws; 4.2.1 Period and aperiodic classes; 4.2.2 Coupling of Markov chains and convergence in law; 4.2.3 Detailed examples; 4.3 Elements on the rate of convergence for laws. 
505 8 |a 4.3.1 The Hilbert space framework4.3.2 Dirichlet form, spectral gap, and exponential bounds; 4.3.3 Spectral theory for reversible matrices; 4.3.4 Continuous-time Markov chains; Exercises; Chapter 5 Monte Carlo methods; 5.1 Approximate solution of the Dirichlet problem; 5.1.1 General principles; 5.1.2 Heat equation in equilibrium; 5.1.3 Heat equation out of equilibrium; 5.1.4 Parabolic partial differential equations; 5.2 Invariant law simulation; 5.2.1 Monte Carlo methods and ergodic theorems; 5.2.2 Metropolis algorithm, Gibbs law, and simulated annealing. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Markov processes. 
650 0 |a Monte Carlo method. 
650 0 |a Numerical calculations. 
650 2 |a Markov Chains 
650 2 |a Monte Carlo Method 
650 6 |a Processus de Markov. 
650 6 |a Méthode de Monte-Carlo. 
650 6 |a Calculs numériques. 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Markov processes.  |2 fast  |0 (OCoLC)fst01010347 
650 7 |a Monte Carlo method.  |2 fast  |0 (OCoLC)fst01025819 
650 7 |a Numerical calculations.  |2 fast  |0 (OCoLC)fst01041288 
776 0 8 |i Print version:  |a Graham, C. (Carl).  |t Markov chains.  |d Chichester, West Sussex : John Wiley & Sons, 2014  |z 9781118517079  |w (DLC) 2013049515 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118882696/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
880 0 0 |6 505-01/(S  |g Machine generated contents note:  |g 1.  |t First steps --  |g 1.1.  |t Preliminaries --  |g 1.2.  |t First properties of Markov chains --  |g 1.2.1.  |t Markov chains, finite-dimensional marginals, and laws --  |g 1.2.2.  |t Transition matrix action and matrix notation --  |g 1.2.3.  |t Random recursion and simulation --  |g 1.2.4.  |t Recursion for the instantaneous laws, invariant laws --  |g 1.3.  |t Natural duality: algebraic approach --  |g 1.3.1.  |t Complex eigenvalues and spectrum --  |g 1.3.2.  |t Doeblin condition and strong irreducibility --  |g 1.3.3.  |t Finite state space Markov chains --  |g 1.4.  |t Detailed examples --  |g 1.4.1.  |t Random walk on a network --  |g 1.4.2.  |t Gambler's ruin --  |g 1.4.3.  |t Branching process: evolution of a population --  |g 1.4.4.  |t Ehrenfest's Urn --  |g 1.4.5.  |t Renewal process --  |g 1.4.6.  |t Word search in a character chain --  |g 1.4.7.  |t Product chain --  |t Exercises --  |g 2.  |t Past, present, and future --  |g 2.1.  |t Markov property and its extensions --  |g 2.1.1.  |t Past σ-field, filtration, and translation operators --  |g 2.1.2.  |t Markov property --  |g 2.1.3.  |t Stopping times and strong Markov property --  |g 2.2.  |t Hitting times and distribution --  |g 2.2.1.  |t Hitting times, induced chain, and hitting distribution --  |g 2.2.2.  |t "One step forward" method, Dirichlet problem --  |g 2.3.  |t Detailed examples --  |g 2.3.1.  |t Gambler's ruin --  |g 2.3.2.  |t Unilateral hitting time for a random walk --  |g 2.3.3.  |t Exit time from a box --  |g 2.3.4.  |t Branching process --  |g 2.3.5.  |t Word search --  |t Exercises --  |g 3.  |t Transience and recurrence --  |g 3.1.  |t Sample paths and state space --  |g 3.1.1.  |t Communication and closed irreducible classes --  |g 3.1.2.  |t Transience and recurrence, recurrent class decomposition --  |g 3.1.3.  |t Detailed examples --  |g 3.2.  |t Invariant measures and recurrence --  |g 3.2.1.  |t Invariant laws and measures --  |g 3.2.2.  |t Canonical invariant measure --  |g 3.2.3.  |t Positive recurrence, invariant law criterion --  |g 3.2.4.  |t Detailed examples --  |g 3.3.  |t Complements --  |g 3.3.1.  |t Hitting times and superharmonic functions --  |g 3.3.2.  |t Lyapunov functions --  |g 3.3.3.  |t Time reversal, reversibility, and adjoint chain --  |g 3.3.4.  |t Birth-and-death chains --  |t Exercises --  |g 4.  |t Long-time behavior --  |g 4.1.  |t Path regeneration and convergence --  |g 4.1.1.  |t Pointwise ergodic theorem, extensions --  |g 4.1.2.  |t Central limit theorem for Markov chains --  |g 4.1.3.  |t Detailed examples --  |g 4.2.  |t Long-time behavior of the instantaneous laws --  |g 4.2.1.  |t Period and aperiodic classes --  |g 4.2.2.  |t Coupling of Markov chains and convergence in law --  |g 4.2.3.  |t Detailed examples --  |g 4.3.  |t Elements on the rate of convergence for laws --  |g 4.3.1.  |t Hilbert space framework --  |g 4.3.2.  |t Dirichlet form, spectral gap, and exponential bounds --  |g 4.3.3.  |t Spectral theory for reversible matrices --  |g 4.3.4.  |t Continuous-time Markov chains --  |t Exercises --  |g 5.  |t Monte Carlo methods --  |g 5.1.  |t Approximate solution of the Dirichlet problem --  |g 5.1.1.  |t General principles --  |g 5.1.2.  |t Heat equation in equilibrium --  |g 5.1.3.  |t Heat equation out of equilibrium --  |g 5.1.4.  |t Parabolic partial differential equations --  |g 5.2.  |t Invariant law simulation --  |g 5.2.1.  |t Monte Carlo methods and ergodic theorems --  |g 5.2.2.  |t Metropolis algorithm, Gibbs law, and simulated annealing --  |g 5.2.3.  |t Exact simulation and backward recursion --  |g Appendix  |t A Complements --  |g A.1.  |t Basic probabilistic notions --  |g A.1.1.  |t Discrete random variable, expectation, and generating function --  |g A.1.2.  |t Conditional probabilities and independence --  |g A.2.  |t Discrete measure convergence --  |g A.2.1.  |t Total variation norm and maximal coupling --  |g A.2.2.  |t Duality between measures and functions --  |g A.2.3.  |t Weak convergence of laws and convergence in law --  |g A.3.  |t Measure-theoretic framework --  |g A.3.1.  |t Probability spaces --  |g A.3.2.  |t Measurable spaces and functions: signed and nonnegative --  |g A.3.3.  |t Random variables, their laws, and expectations --  |g A.3.4.  |t Random sequences and Kolmogorov extension theorem. 
938 |a Internet Archive  |b INAR  |n forthcomingbooks0000unse 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26312189 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26465307 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1666496 
938 |a EBSCOhost  |b EBSC  |n 761570 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00316120 
938 |a YBP Library Services  |b YANK  |n 11419711 
938 |a YBP Library Services  |b YANK  |n 11778618 
938 |a YBP Library Services  |b YANK  |n 11785650 
994 |a 92  |b IZTAP