Cargando…

Probability and stochastic processes : a friendly introduction for electrical and computer engineers /

"In Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, readers are able to grasp the concepts of probability and stochastic processes, and apply these in professional engineering practice. The 3rd edition also includes quiz solutions within the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yates, Roy D. (Autor), Goodman, David J., 1939- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : John Wiley & Sons, Inc., [2014]
Edición:Third edition.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn864753147
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 131204s2014 njua ob 001 0 eng
010 |a  2013048400 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d OCLCO  |d OCLCF  |d UMI  |d COO  |d VT2  |d KSU  |d DEBBG  |d OCLCQ  |d YDX  |d EBLCP  |d MERUC  |d CEF  |d OCLCQ  |d WYU  |d OCLCQ  |d YDX  |d OCLCO  |d UAB  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 945699511  |a 953023071  |a 1066628083  |a 1103264263 
020 |a 9781118804384  |q electronic book 
020 |a 1118804384  |q electronic book 
020 |z 9781118324561  |q paperback 
020 |z 1118324560  |q paperback 
029 1 |a GBVCP  |b 876245254 
029 1 |a DEBSZ  |b 48579635X 
029 1 |a DEBBG  |b BV043969121 
029 1 |a AU@  |b 000062369211 
029 1 |a AU@  |b 000062305967 
029 1 |a AU@  |b 000052313342 
035 |a (OCoLC)864753147  |z (OCoLC)945699511  |z (OCoLC)953023071  |z (OCoLC)1066628083  |z (OCoLC)1103264263 
037 |a CL0500000728  |b Safari Books Online 
042 |a pcc 
050 1 4 |a QA273  |b .Y384 2014 
082 0 0 |a 519.2  |2 23 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Yates, Roy D.,  |e author. 
245 1 0 |a Probability and stochastic processes :  |b a friendly introduction for electrical and computer engineers /  |c Roy D. Yates, Rutgers, the State University of New Jersey, David J. Goodman, New York University. 
250 |a Third edition. 
264 1 |a Hoboken, NJ :  |b John Wiley & Sons, Inc.,  |c [2014] 
300 |a 1 online resource (xvi, 496 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
500 |a Machine generated contents note: Chapter 1. Experiments, Models, and Probabilities Chapter 2. Discrete Random Variables Chapter 3. Continuous Random Variables Chapter 4. Pairs of Random Variables Chapter 5. Random Vectors Chapter 6. Sums of Random Variables Chapter 7. Parameter Estimation Using the Sample Mean Chapter 8. Hypothesis Testing Chapter 9. Estimation of a Random Variable Chapter 10. Stochastic Processes Chapter 11. Random Signal Processing Chapter 12. Markov Chains. 
505 0 |a Cover; Title Page; Copyright; Features of this Text; Who will benefit from using this text?; What's New?; Notable Features; Instructor Support; Preface; Welcome to the third edition; How the book is organized; What is distinctive about this book?; Further Reading; Acknowledgments; A Message to Students from the Authors; Contents; Chapter 1: Experiments, Models, and Probabilities; Getting Started with Probability; 1.1 Set Theory; 1.2 Applying Set Theory to Probability; 1.3 Probability Axioms; 1.4 Conditional Probability; 1.5 Partitions and the Law of Total Probability; 1.6 Independence. 
505 8 |a 1.7 MatlabProblems; Chapter 2: Sequential Experiments; 2.1 Tree Diagrams; 2.2 Counting Methods; 2.3 Independent Trials; 2.4 Reliability Analysis; 2.5 Matlab; Problems; Chapter 3: Discrete Random Variables; 3.1 Definitions; 3.2 Probability Mass Function; 3.3 Families of Discrete Random Variables; 3.4 Cumulative Distribution Function (CDF); 3.5 Averages and Expected Value; 3.6 Functions of a Random Variable; 3.7 Expected Value of a Derived Random Variable; 3.8 Variance and Standard Deviation; 3.9 Matlab; Problems; Chapter 4: Continuous Random Variables; 4.1 Continuous Sample Space. 
505 8 |a 4.2 The Cumulative Distribution Function4.3 Probability Density Function; 4.4 Expected Values; 4.5 Families of Continuous Random Variables; 4.6 Gaussian Random Variables; 4.7 Delta Functions, Mixed Random Variables; 4.8 Matlab; Problems; Chapter 5: Multiple Random Variables; 5.1 Joint Cumulative Distribution Function; 5.2 Joint Probability Mass Function; 5.3 Marginal PMF; 5.4 Joint Probability Density Function; 5.5 Marginal PDF; 5.6 Independent Random Variables; 5.7 Expected Value of a Function of Two Random Variables; 5.8 Covariance, Correlation and Independence. 
505 8 |a 5.9 Bivariate Gaussian Random Variables5.10 Multivariate Probability Models; 5.11 Matlab; Problems; Chapter 6: Probability Models of Derived Random Variables; 6.1 PMF of a Function of Two Discrete Random Variables; 6.2 Functions Yielding Continuous Random Variables; 6.3 Functions Yielding Discrete or Mixed Random Variables; 6.4 Continuous Functions of Two Continuous Random Variables; 6.5 PDF of the Sum of Two Random Variables; 6.6 Matlab; Problems; Chapter 7: Conditional Probability Models; 7.1 Conditioning a Random Variable by an Event; 7.2 Conditional Expected Value Given an Event. 
505 8 |a 7.3 Conditioning Two Random Variables by an Event7.4 Conditioning by a Random Variable; 7.5 Conditional Expected Value Given a Random Variable; 7.6 Bivariate Gaussian Random Variables: Conditional PDFs; 7.7 Matlab; Problems; Chapter 8: Random Vectors; 8.1 Vector Notation; 8.2 Independent Random Variables and Random Vectors; 8.3 Functions of Random Vectors; 8.4 Expected Value Vector and Correlation Matrix; 8.5 Gaussian Random Vectors; 8.6 Matlab; Problems; Chapter 9: Sums of Random Variables; 9.1 Expected Values of Sums; 9.2 Moment Generating Functions. 
520 |a "In Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers, readers are able to grasp the concepts of probability and stochastic processes, and apply these in professional engineering practice. The 3rd edition also includes quiz solutions within the appendix of the text. The resource presents concepts clearly as a sequence of building blocks identified as an axiom, definition or theorem. This approach allows for a better understanding of the material, which can be utilized in solving practical problems"--  |c Provided by publisher. 
588 |a Description based on online resource; title from digital title page (viewed on January 14, 2019). 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Probabilities. 
650 0 |a Stochastic processes. 
650 2 |a Probability 
650 2 |a Stochastic Processes 
650 6 |a Probabilités. 
650 6 |a Processus stochastiques. 
650 7 |a probability.  |2 aat 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Probabilities  |2 fast 
650 7 |a Stochastic processes  |2 fast 
655 0 |a Electronic books. 
700 1 |a Goodman, David J.,  |d 1939-  |e author. 
776 0 8 |i Print version:  |a Yates, Roy D.  |t Probability and stochastic processes.  |b Third edition.  |d Hoboken, NJ : John Wiley & Sons, [2014]  |z 9781118324561  |w (DLC) 2013047063 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118324561/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL30765699 
938 |a YBP Library Services  |b YANK  |n 14749940 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL4946362 
994 |a 92  |b IZTAP