Cargando…

Think Bayes /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Downey, Allen
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly, ©2013.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn863645956
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 131121s2013 caua ob 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d DEBBG  |d CUS  |d DEBSZ  |d REB  |d EBLCP  |d OCLCF  |d OCLCQ  |d FEM  |d OCLCQ  |d YDX  |d CEF  |d UAB  |d WYU  |d UUM  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
015 |a GBB397007  |2 bnb 
016 7 |a 016525585  |2 Uk 
019 |a 968116947  |a 969019847  |a 1026465341  |a 1066649234 
020 |a 1449370780 
020 |a 9781449370787 
020 |a 9781491945407 
020 |a 1491945400 
020 |a 9781491945445  |q (e-book) 
020 |a 1491945443  |q (e-book) 
020 |a 9781491945438 
020 |a 1491945435 
020 |a 9781491945421  |q (ebook) 
020 |a 1491945427  |q (ebook) 
020 |z 9781449370787 
029 1 |a AU@  |b 000052404376 
029 1 |a DEBBG  |b BV041776690 
029 1 |a DEBSZ  |b 404321348 
035 |a (OCoLC)863645956  |z (OCoLC)968116947  |z (OCoLC)969019847  |z (OCoLC)1026465341  |z (OCoLC)1066649234 
037 |a CL0500000342  |b Safari Books Online 
050 4 |a QA279.5  |b .D69 2013 
082 0 4 |a 519.54202855133  |2 23 
049 |a UAMI 
100 1 |a Downey, Allen. 
245 1 0 |a Think Bayes /  |c Allen B. Downey. 
260 |a Sebastopol, CA :  |b O'Reilly,  |c ©2013. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
588 0 |a Online resource; title from title page (Safari, viewed November 12, 2013). 
504 |a Includes bibliographical references and index. 
520 8 |a Annotation  |b If you know how to program with Python and also know a little about probability, youre ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical notation, and use discrete probability distributions instead of continuous mathematics. Once you get the math out of the way, the Bayesian fundamentals will become clearer, and youll begin to apply these techniques to real-world problems. Bayesian statistical methods are becoming more common and more important, but not many resources are available to help beginners. Based on undergraduate classes taught by author Allen Downey, this books computational approach helps you get a solid start. Use your existing programming skills to learn and understand Bayesian statisticsWork with problems involving estimation, prediction, decision analysis, evidence, and hypothesis testingGet started with simple examples, using coins, M & Ms, Dungeons & Dragons dice, paintball, and hockeyLearn computational methods for solving real-world problems, such as interpreting SAT scores, simulating kidney tumors, and modeling the human microbiome. 
505 0 |a Bayes's theorem -- Computational statistics -- Estimation -- More estimation -- Odds and addends -- Decision analysis -- Prediction -- Observer bias -- Two dimensions -- Approximate Bayesian computation -- Hypothesis testing -- Evidence -- Simulation -- A hierarchical model -- Dealing with dimensions. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Bayesian statistical decision theory. 
650 6 |a Théorie de la décision bayésienne. 
650 1 7 |a Bayesian statistical decision theory  |x Data processing.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory  |2 fast 
776 0 8 |i Print version:  |a Downey, Allen.  |t Think Bayes.  |b First edition.  |d Sebastopol, CA : O'Reilly, 2013  |w (DLC) 2015431605 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781491945407/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 12632562 
994 |a 92  |b IZTAP