Cargando…

Classical geometry : Euclidean, transformational, inversive, and projective /

Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understa...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Leonard, I. Ed., 1938- (Autor), Lewis, J. E. (James Edward) (Autor), Liu, A. C. F. (Andrew Chiang-Fung) (Autor), Tokarsky, G. W. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, NJ : Wiley, [2014]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 i 4500
001 OR_ocn861966488
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 131030s2014 nju ob 001 0 eng
010 |a  2013043455 
040 |a DLC  |b eng  |e rda  |e pn  |c DLC  |d YDX  |d N$T  |d EBLCP  |d IDEBK  |d CDX  |d DEBSZ  |d E7B  |d OCLCF  |d YDXCP  |d OCLCO  |d TEFOD  |d OCLCQ  |d TEFOD  |d UMI  |d DEBBG  |d RECBK  |d AZK  |d LVT  |d OCLCA  |d COCUF  |d OCLCQ  |d CCO  |d PIFBY  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d CNCGM  |d STF  |d OCLCQ  |d CEF  |d CRU  |d ICG  |d VTS  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d UAB  |d DKC  |d AU@  |d OCLCQ  |d CNCEN  |d HS0  |d RDF  |d OCLCQ  |d VLY  |d OCLCQ  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCO 
019 |a 922007469  |a 961546185  |a 961578885  |a 962558126  |a 962612049  |a 966572086  |a 1148101292  |a 1162575622  |a 1371768480  |a 1378240806 
020 |a 9781118839430  |q (electronic bk.) 
020 |a 1118839439  |q (electronic bk.) 
020 |a 9781118679142  |q (electronic bk.) 
020 |a 1118679148  |q (electronic bk.) 
020 |a 1118679199 
020 |a 9781118679197 
020 |a 9781118903384 
020 |a 1118903382 
020 |z 9781118679081 
020 |z 1118679083 
020 |z 9781118679197  |q (hardback) 
020 |z 9781118903520 
029 1 |a AU@  |b 000052169920 
029 1 |a DEBBG  |b BV043020350 
029 1 |a DEBBG  |b BV043609153 
029 1 |a DEBSZ  |b 409813095 
029 1 |a DEBSZ  |b 44942801X 
029 1 |a DEBSZ  |b 455699224 
029 1 |a GBVCP  |b 882847244 
035 |a (OCoLC)861966488  |z (OCoLC)922007469  |z (OCoLC)961546185  |z (OCoLC)961578885  |z (OCoLC)962558126  |z (OCoLC)962612049  |z (OCoLC)966572086  |z (OCoLC)1148101292  |z (OCoLC)1162575622  |z (OCoLC)1371768480  |z (OCoLC)1378240806 
037 |a 47D50F88-08D0-49F6-9327-5B65E2040A3A  |b OverDrive, Inc.  |n http://www.overdrive.com 
042 |a pcc 
050 0 0 |a QA445 
072 7 |a MAT  |x 012000  |2 bisacsh 
082 0 0 |a 516  |2 23 
084 |a MAT012000  |a EDU027000  |a MAT003000  |2 bisacsh 
084 |a 414  |2 njb/09 
084 |a 516  |2 njb/09 
049 |a UAMI 
100 1 |a Leonard, I. Ed.,  |d 1938-  |e author. 
245 1 0 |a Classical geometry :  |b Euclidean, transformational, inversive, and projective /  |c I.E. Leonard, J.E. Lewis, A.C.F. Liu, G.W. Tokarsky. 
264 1 |a Hoboken, NJ :  |b Wiley,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a "Written by well-known mathematical problem solvers, Modern Geometry features up-to-date and applicable coverage of the wide spectrum of modern geometry and aids readers in learning the art of logical reasoning, modeling, and proof. With its reader-friendly approach, this undergraduate text features: self-contained coverage of modern geometry, provides a large selection of solved exercises to aid in reader comprehension, contains material that can be tailored for a one-, two-, or three-semester sequence, and provides a wide range of fully worked exercises throughout"--Provided by publisher 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
520 |a Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which provides the foundation for the rest of the material covered throughout; Part Two discusses Euclidean transformations of the plane, as well as groups and their use in studying transformations; and Part Three covers inversive and projective geometry as natural extensions of Euclidean geometry. In addition to featuring real-world applications throughout, Classical Geometry: Euclidean, Transformational, Inversive, and Projective includes: Multiple entertaining and elegant geometry problems at the end of each section for every level of study Fully worked examples with exercises to facilitate comprehension and retention Unique topical coverage, such as the theorems of Ceva and Menalaus and their applications An approach that prepares readers for the art of logical reasoning, modeling, and proofs The book is an excellent textbook for courses in introductory geometry, elementary geometry, modern geometry, and history of mathematics at the undergraduate level for mathematics majors, as well as for engineering and secondary education majors. The book is also ideal for anyone who would like to learn the various applications of elementary geometry. 
505 0 |a CLASSICAL GEOMETRY: Euclidean, Transformational, Inversive, and Projective; Copyright; CONTENTS; Preface; PART I EUCLIDEAN GEOMETRY; 1 PART I EUCLIDEAN GEOMETRY Congruency; 1.1 Introduction; 1.2 Congruent Figures; 1.3 Parallel Lines; 1.3.1 Angles in a Triangle; 1.3.2 Thales' Theorem; 1.3.3 Quadrilaterals; 1.4 More About Congruency; 1.5 Perpendiculars and Angle Bisectors; 1.6 Construction Problems; 1.6.1 The Method of Loci; 1.7 Solutions to Selected Exercises; 1.8 Problems; 2 Concurrency; 2.1 Perpendicular Bisectors; 2.2 Angle Bisectors; 2.3 Altitudes; 2.4 Medians; 2.5 Construction Problems 
505 8 |a 2.6 Solutions to the Exercises2.7 Problems; 3 Similarity; 3.1 Similar Triangles; 3.2 Parallel Lines and Similarity; 3.3 Other Conditions Implying Similarity; 3.4 Examples; 3.5 Construction Problems; 3.6 The Power of a Point; 3.7 Solutions to the Exercises; 3.8 Problems; 4 Theorems of Ceva and Menelaus; 4.1 Directed Distances, Directed Ratios; 4.2 The Theorems; 4.3 Applications of Ceva's Theorem; 4.4 Applications of Menelaus' Theorem; 4.5 Proofs of the Theorems; 4.6 Extended Versions of the Theorems; 4.6.1 Ceva's Theorem in the Extended Plane; 4.6.2 Menelaus' Theorem in the Extended Plane 
505 8 |a 4.7 Problems5 Area; 5.1 Basic Properties; 5.1.1 Areas of Polygons; 5.1.2 Finding the Area of Polygons; 5.1.3 Areas of Other Shapes; 5.2 Applications of the Basic Properties; 5.3 Other Formulae for the Area of a Triangle; 5.4 Solutions to the Exercises; 5.5 Problems; 6 Miscellaneous Topics; 6.1 The Three Problems of Antiquity; 6.2 Constructing Segments of Specific Lengths; 6.3 Construction of Regular Polygons; 6.3.1 Construction of the Regular Pentagon; 6.3.2 Construction of Other Regular Polygons; 6.4 Miquel's Theorem; 6.5 Morley's Theorem; 6.6 The Nine-Point Circle; 6.6.1 Special Cases 
505 8 |a 6.7 The Steiner-Lehmus Theorem6.8 The Circle of Apollonius; 6.9 Solutions to the Exercises; 6.10 Problems; PART II TRANSFORMATIONAL GEOMETRY; 7 The Euclidean Transformations or lsometries; 7.1 Rotations, Reflections, and Translations; 7.2 Mappings and Transformations; 7.2.1 Isometries; 7.3 Using Rotations, Reflections, and Translations; 7.4 Problems; 8 The Algebra of lsometries; 8.1 Basic Algebraic Properties; 8.2 Groups of Isometries; 8.2.1 Direct and Opposite Isometries; 8.3 The Product of Reflections; 8.4 Problems; 9 The Product of Direct lsometries; 9.1 Angles; 9.2 Fixed Points 
505 8 |a 9.3 The Product of Two Translations9.4 The Product of a Translation and a Rotation; 9.5 The Product of Two Rotations; 9.6 Problems; 10 Symmetry and Groups; 10.1 More About Groups; 10.1.1 Cyclic and Dihedral Groups; 10.2 Leonardo's Theorem; 10.3 Problems; 11 Homotheties; 11.1 The Pantograph; 11.2 Some Basic Properties; 11.2.1 Circles; 11.3 Construction Problems; 11.4 Using Homotheties in Proofs; 11.5 Dilatation; 11.6 Problems; 12 Tessellations; 12.1 Tilings; 12.2 Monohedral Tilings; 12.3 Tiling with Regular Polygons; 12.4 Platonic and Archimedean Tilings; 12.5 Problems 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Geometry. 
650 6 |a Géométrie. 
650 7 |a geometry.  |2 aat 
650 7 |a MATHEMATICS  |x Geometry  |x General.  |2 bisacsh 
650 7 |a EDUCATION  |x Statistics.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a Geometry  |2 fast 
700 1 |a Lewis, J. E.  |q (James Edward),  |e author. 
700 1 |a Liu, A. C. F.  |q (Andrew Chiang-Fung),  |e author. 
700 1 |a Tokarsky, G. W.,  |e author. 
776 0 8 |i Print version:  |a Leonard, I. Ed., 1938-  |t Classical geometry.  |d Hoboken, NJ : John Wiley & Sons, Inc., [2014]  |z 9781118679197  |w (DLC) 2013042035 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118679142/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Coutts Information Services  |b COUT  |n 28553950 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1684622 
938 |a ebrary  |b EBRY  |n ebr10891093 
938 |a EBSCOhost  |b EBSC  |n 795084 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28553950 
938 |a Recorded Books, LLC  |b RECE  |n rbeEB00438502 
938 |a YBP Library Services  |b YANK  |n 11868606 
938 |a YBP Library Services  |b YANK  |n 11864407 
994 |a 92  |b IZTAP