|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
OR_ocn857497720 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
130903s2013 caua o 000 0 eng d |
040 |
|
|
|a UMI
|b eng
|e pn
|c UMI
|d COO
|d CUS
|d DEBSZ
|d S4S
|d OCLCQ
|d OCLCF
|d OCLCQ
|d EBLCP
|d FEM
|d OCLCQ
|d CEF
|d WYU
|d UAB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCA
|d OCLCO
|
019 |
|
|
|a 968041364
|a 969019222
|a 1066455078
|
020 |
|
|
|a 9781449364670
|
020 |
|
|
|a 1449364675
|
020 |
|
|
|a 9781449364694
|
020 |
|
|
|a 1449364691
|q (E-Book)
|
029 |
1 |
|
|a AU@
|b 000052007877
|
029 |
1 |
|
|a DEBBG
|b BV041431888
|
029 |
1 |
|
|a DEBSZ
|b 398277702
|
029 |
1 |
|
|a GBVCP
|b 785452117
|
029 |
1 |
|
|a AU@
|b 000067093413
|
035 |
|
|
|a (OCoLC)857497720
|z (OCoLC)968041364
|z (OCoLC)969019222
|z (OCoLC)1066455078
|
037 |
|
|
|a CL0500000272
|b Safari Books Online
|
050 |
|
4 |
|a QA76.9.D32
|b B375694 2013
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Barlow, Mike.
|
245 |
1 |
0 |
|a Real-time big data analytics :
|b emerging architecture /
|c Mike Barlow.
|
260 |
|
|
|a Sebastopol, Calif. :
|b O'Reilly Media,
|c ©2013.
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|2 rda
|
588 |
0 |
|
|a Online resource; title from title page (Safari, viewed Aug. 26, 2013).
|
505 |
0 |
|
|a How fast is fast? -- How real is real time? -- The RTBDA stack -- The five phases of real time -- How big is big? -- Part of a larger trend.
|
520 |
8 |
|
|a Annotation
|b Five or six years ago, analysts working with big datasets made queries and got the results back overnight. The data world was revolutionized a few years ago when Hadoop and other tools made it possible to getthe results from queries in minutes. But the revolution continues. Analysts now demand sub-second, near real-time query results. Fortunately, we have the tools to deliver them. This report examines tools and technologies that are driving real-time big data analytics.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Web usage mining.
|
650 |
|
0 |
|a Data mining.
|
650 |
|
2 |
|a Data Mining
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Analyse du comportement des internautes.
|
650 |
|
6 |
|a Exploration de données (Informatique)
|
650 |
1 |
7 |
|a Big data.
|2 bisacsh
|
650 |
|
7 |
|a Big data
|2 fast
|
650 |
|
7 |
|a Data mining
|2 fast
|
650 |
|
7 |
|a Web usage mining
|2 fast
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781449364670/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1224737
|
994 |
|
|
|a 92
|b IZTAP
|