Cargando…

Reliability engineering /

Presents an integrated approach to the design, engineering, and management of reliability activities throughout the life cycle of a product, including concept, research and development, design, manufacturing, assembly, sales, and service. Containing illustrative guides that include worked problems,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kapur, Kailash C., 1941-
Otros Autores: Pecht, Michael
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : Wiley, [2014]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Machine generated contents note: 1.1. What Is Quality?
  • 1.2. What Is Reliability?
  • 1.2.1. The Ability to Perform as Intended
  • 1.2.2. For a Specified Time
  • 1.2.3. Life-Cycle Conditions
  • 1.2.4. Reliability as a Relative Measure
  • 1.3. Quality, Customer Satisfaction, and System Effectiveness
  • 1.4. Performance, Quality, and Reliability
  • 1.5. Reliability and the System Life Cycle
  • 1.6. Consequences of Failure
  • 1.6.1. Financial Loss
  • 1.6.2. Breach of Public Trust
  • 1.6.3. Legal Liability
  • 1.6.4. Intangible Losses
  • 1.7. Suppliers and Customers
  • 1.8. Summary
  • Problems
  • 2.1. Basic Reliability Concepts
  • 2.1.1. Concept of Probability Density Function
  • 2.2. Hazard Rate
  • 2.2.1. Motivation and Development of Hazard Rate
  • 2.2.2. Some Properties of the Hazard Function
  • 2.2.3. Conditional Reliability
  • 2.3. Percentiles Product Life
  • 2.4. Moments of Time to Failure
  • 2.4.1. Moments about Origin and about the Mean
  • 2.4.2. Expected Life or Mean Time to Failure
  • 2.4.3. Variance or the Second Moment about the Mean
  • 2.4.4. Coefficient of Skewness
  • 2.4.5. Coefficient of Kurtosis
  • 2.5. Summary
  • Problems
  • 3.1. Discrete Distributions
  • 3.1.1. Binomial Distribution
  • 3.1.2. Poisson Distribution
  • 3.1.3. Other Discrete Distributions
  • 3.2. Continuous Distributions Si
  • 3.2.1. Weibull Distribution
  • 3.2.2. Exponential Distribution
  • 3.2.3. Estimation of Reliability for Exponential Distribution
  • 3.2.4. The Normal (Gaussian) Distribution
  • 3.2.5. The Lognormal Distribution
  • 3.2.6. Gamma Distribution
  • 3.3. Probability Plots
  • 3.4. Summary
  • Problems
  • 4.1. What Is Six Sigma?
  • 4.2. Why Six Sigma?
  • 4.3. How Is Six Sigma Implemented?
  • 4.3.1. Steps in the Six Sigma Process
  • 4.3.2. Summary of the Six Sigma Steps
  • 4.4. Optimization Problems in the Six Sigma Process
  • 4.4.1. System Transfer Function
  • 4.4.2. Variance Transmission Equation
  • 4.4.3. Economic Optimization and Quality Improvement
  • 4.4.4. Tolerance Design Problem
  • 4.5. Design for Six Sigma
  • 4.5.1. Identify (I)
  • 4.5.2. Characterize (C)
  • 4.5.3. Optimize (O)
  • 4.5.4. Verify (V)
  • 4.6. Summary
  • Problems
  • 5.1. Product Requirements and Constraints
  • 5.2. Product Life Cycle Conditions
  • 5.3. Reliability Capability
  • 5.4. Parts and Materials Selection
  • 5.5. Human Factors and Reliability
  • 5.6. Deductive versus Inductive Methods
  • 5.7. Failure Modes, Effects, and Criticality Analysis
  • 5.8. Fault Tree Analysis
  • 5.8.1. Role of FTA in Decision-Making
  • 5.8.2. Steps of Fault Tree Analysis
  • 5.8.3. Basic Paradigms for the Construction of Fault Trees
  • 5.8.4. Definition of the Top Event
  • 5.8.5. Faults versus Failures
  • 5.8.6. Minimal Cut Sets
  • 5.9. Physics of Failure
  • 5.9.1. Stress Margins
  • 5.9.2. Model Analysis of Failure Mechanisms
  • 5.9.3. Derating
  • 5.9.4. Protective Architectures
  • 5.9.5. Redundancy
  • 5.9.6. Prognostics
  • 5.10. Design Review
  • 5.11. Qualification
  • 5.12. Manufacture and Assembly
  • 5.12.1. Manufacturability
  • 5.12.2. Process Verification Testing
  • 5.13. Analysis, Product Failure, and Root Causes
  • 5.14. Summary
  • Problems
  • 6.1. Defining Requirements
  • 6.2. Responsibilities of the Supply Chain
  • 6.2.1. Multiple-Customer Products
  • 6.2.2. Single-Customer Products
  • 6.2.3. Custom Products
  • 6.3. The Requirements Document
  • 6.4. Specifications
  • 6.5. Requirements Tracking
  • 6.6. Summary
  • Problems
  • 7.1. Defining the Life-Cycle Profile
  • 7.2. Life-Cycle Events
  • 7.2.1. Manufacturing and Assembly
  • 7.2.2. Testing and Screening
  • 7.2.3. Storage
  • 7.2.4. Transportation
  • 7.2.5. Installation
  • 7.2.6. Operation
  • 7.2.7. Maintenance
  • 7.3. Loads and Their Effects
  • 7.3.1. Temperature
  • 7.3.2. Humidity
  • 7.3.3. Vibration and Shock
  • 7.3.4. Solar Radiation
  • 7.3.5. Electromagnetic Radiation
  • 7.3.6. Pressure
  • 7.3.7. Chemicals
  • 7.3.8. Sand and Dust
  • 7.3.9. Voltage
  • 7.3.10. Current
  • 7.3.11. Human Factors
  • 7.4. Considerations and Recommendations for LCP Development
  • 7.4.1. Extreme Specifications-Based Design (Global and Local Environments)
  • 7.4.2. Standards-Based Profiles
  • 7.4.3. Combined Load Conditions
  • 7.4.4. Change in Magnitude and Rate of Change of Magnitude
  • 7.5. Methods for Estimating Life-Cycle Loads
  • 7.5.1. Market Studies and Standards Based Profiles as Sources of Data
  • 7.5.2. In Situ Monitoring of Load Conditions
  • 7.5.3. Field Trial Records, Service Records, and Failure Records
  • 7.5.4. Data on Load Histories of Similar Parts, Assemblies, or Products
  • 7.6. Summary
  • Problems
  • 8.1. Capability Maturity Models.
  • 8.2. Key Reliability Practices
  • 8.2.1. Reliability Requirements and Planning
  • 8.2.2. Training and Development
  • 8.2.3. Reliability Analysis
  • 8.2.4. Reliability Testing
  • 8.2.5. Supply-Chain Management
  • 8.2.6. Failure Data Tracking and Analysis
  • 8.2.7. Verification and Validation
  • 8.2.8. Reliability Improvement
  • 8.3. Summary
  • Problems
  • 9.1. Part Assessment Process
  • 9.1.1. Performance Assessment
  • 9.1.2. Quality Assessment
  • 9.1.3. Process Capability Index
  • 9.1.4. Average Outgoing Quality
  • 9.1.5. Reliability Assessment
  • 9.1.6. Assembly Assessment
  • 9.2. Parts Management
  • 9.2.1. Supply Chain Management
  • 9.2.2. Part Change Management
  • 9.2.3. Industry Change Control Policies
  • 9.3. Risk Management
  • 9.4. Summary
  • Problems
  • 10.1. Development of FMMEA
  • 10.2. Failure Modes, Mechanisms, and Effects Analysis
  • 10.2.1. System Definition, Elements, and Functions
  • 10.2.2. Potential Failure Modes
  • 10.2.3. Potential Failure Causes
  • 10.2.4. Potential Failure Mechanisms
  • 10.2.5. Failure Models
  • 10.2.6. Life-Cycle Profile
  • 10.2.7. Failure Mechanism Prioritization
  • 10.2.8. Documentation
  • 10.3. Case Study
  • 10.4. Summary
  • Problems
  • 11.1. Design for Reliability
  • 11.2. Design of a Tension Element
  • 11.3. Reliability Models for Probabilistic Design
  • 11.4. Example of Probabilistic Design and Design for a Reliability Target
  • 11.5. Relationship between Reliability, Factor of Safety, and Variability
  • 11.6. Functions of Random Variables
  • 11.7. Steps for Probabilistic Design
  • 11.8. Summary
  • Problems
  • 12.1. Part Ratings
  • 12.1.1. Absolute Maximum Ratings
  • 12.1.2. Recommended Operating Conditions
  • 12.1.3. Factors Used to Determine Ratings
  • 12.2. Derating
  • 12.2.1. How Is Derating Practiced?
  • 12.2.2. Limitations of the Derating Methodology
  • 12.2.3. How to Determine These Limits
  • 12.3. Uprating
  • 12.3.1. Parts Selection and Management Process
  • 12.3.2. Assessment for Uprateability
  • 12.3.3. Methods of Uprating
  • 12.3.4. Continued Assurance
  • 12.4. Summary
  • Problems
  • 13.1. Tests during the Product Life Cycle
  • 13.1.1. Concept Design and Prototype
  • 13.1.2. Performance Validation to Design Specification
  • 13.1.3. Design Maturity Validation
  • 13.1.4. Design and Manufacturing Process Validation
  • 13.1.5. Preproduction Low Volume Manufacturing
  • 13.1.6. High Volume Production
  • 13.1.7. Feedback from Field Data
  • 13.2. Reliability Estimation
  • 13.3. Product Qualification and Testing
  • 13.3.1. Input to PoF Qualification Methodology
  • 13.3.2. Accelerated Stress Test Planning and Development
  • 13.3.3. Specimen Characterization
  • 13.3.4. Accelerated Life Tests
  • 13.3.5. Virtual Testing
  • 13.3.6. Virtual Qualification
  • 13.3.7. Output
  • 13.4. Case Study: System-in-Package Drop Test Qualification
  • 13.4.1. Step 1: Accelerated Test Planning and Development
  • 13.4.2. Step 2: Specimen Characterization
  • 13.4.3. Step 3: Accelerated Life Testing
  • 13.4.4. Step 4: Virtual Testing
  • 13.4.5. Global FEA
  • 13.4.6. Strain Distributions Due to Modal Contributions
  • 13.4.7. Acceleration Curves
  • 13.4.8. Local FEA
  • 13.4.9. Step 5: Virtual Qualification
  • 13.4.10. PoF Acceleration Curves
  • 13.4.11. Summary of the Methodology for Qualification
  • 13.5. Basic Statistical Concepts
  • 13.5.1. Confidence Interval
  • 13.5.2. Interpretation of the Confidence Level
  • 13.5.3. Relationship between Confidence Interval and Sample Size
  • 13.6. Confidence Interval for Normal Distribution
  • 13.6.1. Unknown Mean with a Known Variance for Normal Distribution
  • 13.6.2. Unknown Mean with an Unknown Variance for Normal Distribution
  • 13.6.3. Differences in Two Population Means with Variances Known
  • 13.7. Confidence Intervals for Proportions
  • 13.8. Reliability Estimation and Confidence Limits for Success-Failure Testing
  • 13.8.1. Success Testing
  • 13.9. Reliability Estimation and Confidence Limits for Exponential Distribution
  • 13.10. Summary
  • Problems
  • 14.1. Process Control System
  • 14.1.1. Control Charts: Recognizing Sources of Variation
  • 14.1.2. Sources of Variation
  • 14.1.3. Use of Control Charts for Problem Identification
  • 14.2. Control Charts
  • 14.2.1. Control Charts for Variables
  • 14.2.2. X-Bar and R Charts
  • 14.2.3. Moving Range Chart Example
  • 14.2.4. X-Bar and S Charts
  • 14.2.5. Control Charts for Attributes
  • 14.2.6. p Chart and np Chart
  • 14.2.7. np Chart Example
  • 14.2.8. c Chart and u Chart
  • 14.2.9. c Chart Example
  • 14.3. Benefits of Control Charts
  • 14.4. Average Outgoing Quality
  • 14.4.1. Process Capability Studies.
  • Note continued: 14.5. Advanced Control Charts
  • 14.5.1. Cumulative Sum Control Charts
  • 14.5.2. Exponentially Weighted Moving Average Control Charts
  • 14.5.3. Other Advanced Control Charts
  • 14.6. Summary
  • Problems
  • 15.1. Burn-In Data Observations
  • 15.2. Discussion of Burn-In Data
  • 15.3. Higher Field Reliability without Screening
  • 15.4. Best Practices
  • 15.5. Summary
  • Problems
  • 16.1. Root-Cause Analysis Processes
  • 16.1.1. Preplanning
  • 16.1.2. Collecting Data for Analysis and Assessing Immediate Causes
  • 16.1.3. Root-Cause Hypothesization
  • 16.1.4. Analysis and Interpretation of Evidence
  • 16.1.5. Root-Cause Identification and Corrective Actions
  • 16.1.6. Assessment of Corrective Actions
  • 16.2. No-Fault-Found
  • 16.2.1. An Approach to Assess NFF
  • 16.2.2. Common Mode Failure
  • 16.2.3. Concept of Common Mode Failure
  • 16.2.4. Modeling and Analysis for Dependencies for Reliability Analysis
  • 16.2.5. Common Mode Failure Root Causes
  • 16.2.6. Common Mode Failure Analysis
  • 16.2.7. Common Mode Failure Occurrence and Impact Reduction
  • 16.3. Summary
  • Problems
  • 17.1. Reliability Block Diagram
  • 17.2. Series System
  • 17.3. Products with Redundancy
  • 17.3.1. Active Redundancy
  • 17.3.2. Standby Systems
  • 17.3.3. Standby Systems with Imperfect Switching
  • 17.3.4. Shared Load Parallel Models
  • 17.3.5. (k, n) Systems
  • 17.3.6. Limits of Redundancy
  • 17.4. Complex System Reliability
  • 17.4.1. Complete Enumeration Method
  • 17.4.2. Conditional Probability Method
  • 17.4.3. Concept of Coherent Structures
  • 17.5. Summary
  • Problems
  • 18.1. Conceptual Model for Prognostics
  • 18.2. Reliability and Prognostics
  • 18.3. PHM for Electronics
  • 18.4. PHM Concepts and Methods
  • 18.4.1. Fuses and Canaries
  • 18.5. Monitoring and Reasoning of Failure Precursors
  • 18.5.1. Monitoring Environmental and Usage Profiles for Damage Modeling
  • 18.6. Implementation of PHM in a System of Systems
  • 18.7. Summary
  • Problems
  • 19.1. Product Warranties
  • 19.2. Warranty Return Information
  • 19.3. Warranty Policies
  • 19.4. Warranty and Reliability
  • 19.5. Warranty Cost Analysis
  • 19.5.1. Elements of Warranty Cost Models
  • 19.5.2. Failure Distributions
  • 19.5.3. Cost Modeling Calculation
  • 19.5.4. Modeling Assumptions and Notation
  • 19.5.5. Cost Models Examples
  • 19.5.6. Information Needs
  • 19.5.7. Other Cost Models
  • 19.6. Warranty and Reliability Management
  • 19.7. Summary
  • Problems.