|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
OR_ocn857370354 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
130830s2014 nju ob 001 0 eng |
010 |
|
|
|a 2013035576
|
040 |
|
|
|a DLC
|b eng
|e rda
|e pn
|c DLC
|d N$T
|d E7B
|d YDXCP
|d RECBK
|d UMI
|d DEBBG
|d DEBSZ
|d COO
|d OCLCQ
|d OCLCF
|d VT2
|d D6H
|d COCUF
|d OCLCQ
|d MOR
|d PIFAG
|d OCLCQ
|d U3W
|d STF
|d CEF
|d NRAMU
|d INT
|d OCLCQ
|d WYU
|d TKN
|d OCLCQ
|d UAB
|d AU@
|d UKAHL
|d DLC
|d HS0
|d RDF
|d OCLCQ
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 867705378
|a 879345622
|a 904280638
|a 961591553
|a 962708099
|a 1100454033
|a 1124392656
|a 1148121250
|
020 |
|
|
|a 9781118605837
|q (ePub)
|
020 |
|
|
|a 1118605837
|q (ePub)
|
020 |
|
|
|a 9781118606001
|q (Adobe PDF)
|
020 |
|
|
|a 1118606000
|q (Adobe PDF)
|
020 |
|
|
|a 1118605500
|
020 |
|
|
|a 9781118605509
|
020 |
|
|
|z 9781118605509
|q (hardback)
|
029 |
1 |
|
|a AU@
|b 000051908177
|
029 |
1 |
|
|a CHNEW
|b 000643092
|
029 |
1 |
|
|a DEBBG
|b BV042032320
|
029 |
1 |
|
|a DEBSZ
|b 414177878
|
029 |
1 |
|
|a NZ1
|b 16078166
|
029 |
1 |
|
|a AU@
|b 000067091137
|
035 |
|
|
|a (OCoLC)857370354
|z (OCoLC)867705378
|z (OCoLC)879345622
|z (OCoLC)904280638
|z (OCoLC)961591553
|z (OCoLC)962708099
|z (OCoLC)1100454033
|z (OCoLC)1124392656
|z (OCoLC)1148121250
|
037 |
|
|
|a CL0500000422
|b Safari Books Online
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QC32
|
072 |
|
7 |
|a MAT
|x 003000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 029000
|2 bisacsh
|
082 |
0 |
0 |
|a 519.5
|2 23
|
084 |
|
|
|a MAT029000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Zacks, Shelemyahu,
|d 1932-
|e author.
|
245 |
1 |
0 |
|a Examples and problems in mathematical statistics /
|c Shelemyahu Zacks.
|
264 |
|
1 |
|a Hoboken, New Jersey :
|b Wiley,
|c [2013]
|
300 |
|
|
|a 1 online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
0 |
|
|a Wiley Series in Probability and Statistics.
|
520 |
|
|
|a "This book presents examples that illustrate the theory of mathematical statistics and details how to apply the methods for solving problems"--
|c Provided by publisher.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
8 |
|
|a 1.6.5 Transformations1.7 JOINT DISTRIBUTIONS, CONDITIONAL DISTRIBUTIONS AND INDEPENDENCE; 1.7.1 Joint Distributions; 1.7.2 Conditional Expectations: General Definition; 1.7.3 Independence; 1.8 MOMENTS AND RELATED FUNCTIONALS; 1.9 MODES OF CONVERGENCE; 1.10 WEAK CONVERGENCE; 1.11 LAWS OF LARGE NUMBERS; 1.11.1 The Weak Law of Large Numbers (WLLN); 1.11.2 The Strong Law of Large Numbers (SLLN); 1.12 CENTRAL LIMIT THEOREM; 1.13 MISCELLANEOUS RESULTS; 1.13.1 Law of the Iterated Logarithm; 1.13.2 Uniform Integrability; 1.13.3 Inequalities; 1.13.4 The Delta Method; 1.13.5 The Symbols op and Op
|
505 |
8 |
|
|a 1.13.6 The Empirical Distribution and Sample QuantilesPART II: EXAMPLES; PART III: PROBLEMS; PART IV: SOLUTIONS TO SELECTED PROBLEMS; 2 Statistical Distributions; PART I: THEORY; 2.1 INTRODUCTORY REMARKS; 2.2 FAMILIES OF DISCRETE DISTRIBUTIONS; 2.2.1 Binomial Distributions; 2.2.2 Hypergeometric Distributions; 2.2.3 Poisson Distributions; 2.2.4 Geometric, Pascal, and Negative Binomial Distributions; 2.3 SOME FAMILIES OF CONTINUOUS DISTRIBUTIONS; 2.3.1 Rectangular Distributions; 2.3.2 Beta Distributions; 2.3.3 Gamma Distributions; 2.3.4 Weibull and Extreme Value Distributions
|
505 |
8 |
|
|a 2.3.5 Normal Distributions2.3.6 Normal Approximations; 2.4 TRANSFORMATIONS; 2.4.1 One-to-One Transformations of Several Variables; 2.4.2 Distribution of Sums; 2.4.3 Distribution of Ratios; 2.5 VARIANCES AND COVARIANCES OF SAMPLE MOMENTS; 2.6 DISCRETE MULTIVARIATE DISTRIBUTIONS; 2.6.1 The Multinomial Distribution; 2.6.2 Multivariate Negative Binomial; 2.6.3 Multivariate Hypergeometric Distributions; 2.7 MULTINORMAL DISTRIBUTIONS; 2.7.1 Basic Theory; 2.7.2 Distribution of Subvectors and Distributions of Linear Forms; 2.7.3 Independence of Linear Forms
|
505 |
8 |
|
|a 2.8 DISTRIBUTIONS OF SYMMETRIC QUADRATIC FORMS OF NORMAL VARIABLES2.9 INDEPENDENCE OF LINEAR AND QUADRATIC FORMS OF NORMAL VARIABLES; 2.10 THE ORDER STATISTICS; 2.11 t-DISTRIBUTIONS; 2.12 F-DISTRIBUTIONS; 2.13 THE DISTRIBUTION OF THE SAMPLE CORRELATION; 2.14 EXPONENTIAL TYPE FAMILIES; 2.15 APPROXIMATING THE DISTRIBUTION OF THE SAMPLE MEAN: EDGEWORTH AND SADDLEPOINT APPROXIMATIONS; 2.15.1 Edgeworth Expansion; 2.15.2 Saddlepoint Approximation; PART II: EXAMPLES; PART III: PROBLEMS; PART IV: SOLUTIONS TO SELECTED PROBLEMS; 3 Sufficient Statistics and the Information in Samples; PART I: THEORY
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Mathematical statistics
|v Problems, exercises, etc.
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Mathematical statistics.
|2 fast
|0 (OCoLC)fst01012127
|
655 |
|
7 |
|a Problems and exercises.
|2 fast
|0 (OCoLC)fst01423783
|
776 |
0 |
8 |
|i Print version:
|a Zacks, Shelemyahu, 1932-
|t Examples and problems in mathematical statistics.
|d Hoboken, New Jersey : Wiley, [2013]
|z 9781118605509
|w (DLC) 2013034492
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781118605837/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10825593
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 683170
|
938 |
|
|
|a Recorded Books, LLC
|b RECE
|n rbeEB00213770
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11558647
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11629972
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26129951
|
994 |
|
|
|a 92
|b IZTAP
|