Beginning partial differential equations /
"Featuring a challenging, yet accessible, introduction to partial differential equations, Beginning Partial Differential Equations provides a solid introduction to partial differential equations, particularly methods of solution based on characteristics, separation of variables, as well as Four...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Hoboken :
Wiley,
2014.
|
Edición: | Third edition. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- 1. First Ideas
- 2. Solutions of the Heat Equation
- 3. Solutions of the Wave Equation
- 4. Dirichlet and Neumann Problems
- 4. 7 Existence Theorem for a Dirichlet Problem
- 5. Fourier Integral Methods of Solution
- 6. Solutions Using Eigenfunction Expansions
- 7. Integral Transform Methods of Solution
- 8. First-Order Equations
- 9. End Materials.
- 1. First Ideas
- 1.1. Two Partial Differential Equations
- 1.1.1. The Heat, or Diffusion, Equati
- 1.1.2. The Wave Equation
- 1.2. Fourier Series
- 1.2.1. The Fourier Series of a Function
- 1.2.2. Fourier Sine and Cosine Series
- 1.3. Two Eigenvalue Problems
- 1.4. A Proof of the Fourier Convergence Theorem
- 1.4.1. The Role of Periodicity
- 1.4.2. Dirichlet's Formula
- 1.4.3. The Riemann-Lebesgue Lemma
- 1.4.4. Proof of the Convergence Theorem
- 2. Solutions of the Heat Equation
- 2.1. Solutions on an Interval [0, L]
- 2.1.1. Ends Kept at Temperature Zero
- 2.1.2. Insulated Ends
- 2.1.3. Ends at Different Temperatures
- 2.1.4. A Diffusion Equation with Additional Terms
- 2.1.5. One Radiating End
- 2.2. A Nonhomogeneous Problem
- 2.3. The Heat Equation in Two Space Variables
- 2.4. The Weak Maximum Principle
- 3. Solutions of the Wave Equation
- 3.1. Solutions on Bounded Intervals
- 3.1.1. Fixed Ends
- 3.1.2. Fixed Ends with a Forcing Term
- 3.1.3. Damped Wave Motion
- 3.2. The Cauchy Problem
- 3.2.1. d'Alembert's Solution
- 3.2.1.1. Forward and Backward Waves
- 3.2.2. The Cauchy Problem on a Half Line
- 3.2.3. Characteristic Triangles and Quadrilaterals
- 3.2.4. A Cauchy Problem with a Forcing Term
- 3.2.5. String with Moving Ends
- 3.3. The Wave Equation in Higher Dimensions
- 3.3.1. Vibrations in a Membrane with Fixed Frame
- 3.3.2. The Poisson Integral Solution
- 3.3.3. Hadamard's Method of Descent
- 4. Dirichlet and Neumann Problems
- 4.1. Laplace's Equation and Harmonic Functions
- 4.1.1. Laplace's Equation in Polar Coordinates
- 4.1.2. Laplace's Equation in Three Dimensions
- 4.2. The Dirichlet Problem for a Rectangle
- 4.3. The Dirichlet Problem for a Disk
- 4.3.1. Poisson's Integral Solution
- 4.4. Properties of Harmonic Functions
- 4.4.1. Topology of Rn
- 4.4.2. Representation Theorems
- 4.4.2.1. A Representation Theorem in R3
- 4.4.2.2. A Representation Theorem in the Plane
- 4.4.3. The Mean Value Property and the Maximum Principle
- 4.5. The Neumann Problem
- 4.5.1. Existence and Uniqueness
- 4.5.2. Neumann Problem for a Rectangle
- 4.5.3. Neumann Problem for a Disk
- 4.6. Poisson's Equation
- 4. 7 Existence Theorem for a Dirichlet Problem
- 5. Fourier Integral Methods of Solution
- 5.1. The Fourier Integral of a Function
- 5.1.1. Fourier Cosine and Sine Integrals
- 5.2. The Heat Equation on the Real Line
- 5.2.1. A Reformulation of the Integral Solution
- 5.2.2. The Heat Equation on a Half Line
- 5.3. The Debate over the Age of the Earth
- 5.4. Burger's Equation
- 5.4.1. Traveling Wave Solutions of Burger's Equation
- 5.5. The Cauchy Problem for the Wave Equation
- 5.6. Laplace's Equation on Unbounded Domains
- 5.6.1. Dirichlet Problem for the Upper Half Plane
- 5.6.2. Dirichlet Problem for the Right Quarter Plane
- 5.6.3. A Neumann Problem for the Upper Half Plane
- 6. Solutions Using Eigenfunction Expansions
- 6.1. A Theory of Eigenfunction Expansions
- 6.1.1. A Closer Look at Expansion Coefficients
- 6.2. Bessel Functions
- 6.2.1. Variations on Bessel's Equation
- 6.2.2. Recurrence Relations
- 6.2.3. Zeros of Bessel Functions
- 6.2.4. Fourier-Bessel Expansions
- 6.3. Applications of Bessel Functions
- 6.3.1. Temperature Distribution in a Solid Cylinder
- 6.3.2. Vibrations of a Circular Drum
- 6.3.3. Oscillations of a Hanging Chain
- 6.3.4. Did Poe Get His Pendulum Right?
- 6.4. Legendre Polynomials and Applications
- 6.4.1. A Generating Function
- 6.4.2. A Recurrence Relation
- 6.4.3. Fourier-Legendre Expansions
- 6.4.4. Zeros of Legendre Polynomials
- 6.4.5. Steady-State Temperature in a Solid Sphere
- 6.4.6. Spherical Harmonics
- 7. Integral Transform Methods of Solution
- 7.1. The Fourier Transform
- 7.1.1. Convolution
- 7.1.2. Fourier Sine and Cosine Transforms
- 7.2. Heat and Wave Equations
- 7.2.1. The Heat Equation on the Real Line
- 7.2.2. Solution by Convolution
- 7.2.3. The Heat Equation on a Half Line
- 7.2.4. The Wave Equation by Fourier Transform
- 7.3. The Telegraph Equation
- 7.4. The Laplace Transform
- 7.4.1. Temperature Distribution in a Semi-Infinite Bar
- 7.4.2. A Diffusion Problem in a Semi-Infinite Medium
- 7.4.3. Vibrations in an Elastic Bar
- 8. First-Order Equations
- 8.1. Linear First-Order Equations
- 8.2. The Significance of Characteristics
- 8.3. The Quasi-Linear Equation
- 9. End Materials
- 9.1. Notation
- 9.2. Use of MAPLE
- 9.2.1. Numerical Computations and Graphing
- 9.2.2. Ordinary Differential Equations
- 9.2.3. Integral Transforms
- 9.2.4. Special Functions
- 9.3. Answers to Selected Problems.