A real time approach to process control /
"With resources at a premium, and ecological concerns paramount, the need for clean, efficient and low-cost processes is one of the most critical challenges facing chemical engineers. The ability to control these processes, optimizing one, two or several variables has the potential to make more...
| Clasificación: | Libro Electrónico |
|---|---|
| Autor principal: | |
| Otros Autores: | , |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Chichester, West Sussex, United Kingdom :
Wiley,
2014.
|
| Edición: | Third edition. |
| Colección: | Engineering professional collection
|
| Temas: | |
| Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: 1.A Brief History of Process Control and Process Simulation
- 1.1. Process Control
- 1.2. Process Simulation
- References
- 2. Process Control Hardware Fundamentals
- 2.1. Control System Components
- 2.2. Primary Elements
- 2.2.1. Pressure Measurement
- 2.2.2. Level Measurement
- 2.2.3. Temperature Measurement
- 2.2.4. Flow Measurement
- 2.2.5. Quality Measurement and Analytical Instrumentation
- 2.2.6. Application Range and Accuracy of Different Sensors
- 2.3. Final Control Elements
- 2.3.1. Control Valves
- References
- 3. Fundamentals of Single-Input/Single-Output Systems
- 3.1. Open Loop Control
- 3.2. Disturbances
- 3.3. Feedback Control
- Overview
- 3.4. Feedback Control
- A Closer Look
- 3.4.1. Positive and Negative Feedbacks
- 3.4.2. Control Elements
- 3.4.3. Sensor/Transmitter
- 3.4.4. Processes
- 3.4.5. Final Control Element
- 3.4.6. Controller
- 3.5. Process Attributes
- Capacitance and Dead Time
- 3.5.1. Capacitance
- 3.5.2. Dead Time
- 3.6. Process Dynamic Response
- 3.7. Process Modelling and Simulation
- 3.7.1. First-Order Systems
- 3.7.2. Second-Order and Higher Order Systems
- 3.7.3. Simple System Analysis
- 3.7.4. Classical Modelling for Control Approaches
- 3.7.5. The Modern Modelling for Control Approach
- References
- 4. Basic Control Modes
- 4.1. On
- Off Control
- 4.2. Proportional (P-Only) Control
- 4.3. Integral (I-Only) Control
- 4.4. Proportional Plus Integral (PI) Control
- 4.5. Derivative Action
- 4.6. Proportional Plus Derivative (PD) Controller
- 4.7. Proportional Integral Derivative (PID) Control
- 4.8. Digital Electronic Controller Forms
- 4.9. Choosing the Correct Controller
- 4.10. Controller Hardware
- References
- 5. Tuning Feedback Controllers
- 5.1. Quality of Control and Optimization
- 5.1.1. Controller Response
- 5.1.2. Error Performance Criteria
- 5.2. Tuning Methods
- 5.2.1.`Trial and Error' Method
- 5.2.2. Process Reaction Curve Methods
- 5.2.3. Constant Cycling Methods
- References
- 6. Advanced Topics in Classical Automatic Control
- 6.1. Cascade Control
- 6.1.1. Starting up a Cascade System
- 6.2. Feedforward Control
- 6.3. Ratio Control
- 6.4. Override Control (Auto Selectors)
- 6.4.1. Protection of Equipment
- 6.4.2. Auctioneering
- 6.4.3. Redundant Instrumentation
- 6.4.4. Artificial Measurements
- 6.5. Split Range Control
- References
- 7.Common Control Loops
- 7.1. Flow Loops
- 7.2. Liquid Pressure Loops
- 7.3. Liquid Level Control
- 7.3.1. Proportional-Only Control for Integrating Processes
- 7.3.2. PI Controller Tuning for Integrating Process
- 7.4. Gas Pressure Loops
- 7.5. Temperature Control Loops
- 7.5.1. The Endothermic Reactor Temperature Control Loop
- 7.5.2. The Exothermic Reactor Temperature Control Loop
- 7.6. Pump Control
- 7.7.Compressor Control
- 7.7.1. Reciprocating Compressor Control
- 7.7.2. Centrifugal Compressor Control
- 7.8. Boiler Control
- 7.8.1.Combustion Control
- 7.8.2. Water Drum Level Control
- 7.8.3. Water Drum Pressure Control
- 7.8.4. Steam Temperature Control
- References
- 8. Distillation Column Control
- 8.1. Basic Terms
- 8.2. Steady-State and Dynamic Degrees of Freedom
- 8.3. Control System Objectives and Design Considerations
- 8.4. Methodology for Selection of a Controller Structure
- 8.5. Level, Pressure, Temperature and Composition Control
- 8.5.1. Level Control
- 8.5.2. Pressure Control
- 8.5.3. Temperature Control
- 8.5.4.Composition Control
- 8.6. Optimizing Control
- 8.6.1. Example: Benzene Column with a Rectifying Section Sidestream
- 8.7. Distillation Control Scheme Design Using Steady-State Models
- 8.7.1. Screening Control Strategies via Steady-State Simulation
- 8.7.2.A Case Study
- The Workshop Stabilizer
- 8.7.3. Respecifying Simulation Specifications
- 8.7.4. Mimicking the Behaviour of Analysers or Lab Analyses
- 8.7.5. Developing an Economic Profitability Function
- 8.7.6. Evaluating the Candidate Strategies
- 8.7.7. Evaluating the Candidate Strategies under Disturbances
- 8.7.8. Evaluating Sensor Strategies
- 8.7.9. Example Summary
- 8.8. Distillation Control Scheme Design Using Dynamic Models
- References
- 9. Using Steady-State Methods in a Multi-loop Control Scheme
- 9.1. Variable Pairing
- 9.2. The Relative Gain Array
- 9.2.1. Calculating the RGA with Experiments
- 9.2.2. Calculating the RGA Using the Steady-State Gain Matrix
- 9.2.3. Interpreting the RGA
- 9.3. Niederlinski Index
- 9.4. Decoupling Control Loops
- 9.4.1. Singular Value Decomposition
- 9.5. Tuning the Controllers for Multi-loop Systems
- 9.6. Practical Examples
- 9.6.1. Example 1: A Two-Stream Mixer
- 9.6.2. Example 2: A Conventional Distillation Column
- 9.7. Summary
- References
- 10. Plant-Wide Control
- 10.1. Short-Term versus Long-Term Control Focus
- 10.2. Cascaded Units
- 10.3. Recycle Streams
- 10.4. General Considerations for Plant-Wide Control
- References
- 11. Advanced Process Control
- 11.1. Advanced Process Control
- 11.2. Model Predictive Control
- 11.3. Dynamic Matrix Control
- 11.4. General Considerations for Model Predictive Control Implementation
- References.


