A real time approach to process control /
"With resources at a premium, and ecological concerns paramount, the need for clean, efficient and low-cost processes is one of the most critical challenges facing chemical engineers. The ability to control these processes, optimizing one, two or several variables has the potential to make more...
| Clasificación: | Libro Electrónico | 
|---|---|
| Autor principal: | |
| Otros Autores: | , | 
| Formato: | Electrónico eBook | 
| Idioma: | Inglés | 
| Publicado: | 
      Chichester, West Sussex, United Kingdom :
        
      Wiley,    
    
      2014.
     | 
| Edición: | Third edition. | 
| Colección: | Engineering professional collection
             | 
| Temas: | |
| Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) | 
                Tabla de Contenidos: 
            
                  - Machine generated contents note: 1.A Brief History of Process Control and Process Simulation
 - 1.1. Process Control
 - 1.2. Process Simulation
 - References
 - 2. Process Control Hardware Fundamentals
 - 2.1. Control System Components
 - 2.2. Primary Elements
 - 2.2.1. Pressure Measurement
 - 2.2.2. Level Measurement
 - 2.2.3. Temperature Measurement
 - 2.2.4. Flow Measurement
 - 2.2.5. Quality Measurement and Analytical Instrumentation
 - 2.2.6. Application Range and Accuracy of Different Sensors
 - 2.3. Final Control Elements
 - 2.3.1. Control Valves
 - References
 - 3. Fundamentals of Single-Input/Single-Output Systems
 - 3.1. Open Loop Control
 - 3.2. Disturbances
 - 3.3. Feedback Control
 - Overview
 - 3.4. Feedback Control
 - A Closer Look
 - 3.4.1. Positive and Negative Feedbacks
 - 3.4.2. Control Elements
 - 3.4.3. Sensor/Transmitter
 - 3.4.4. Processes
 - 3.4.5. Final Control Element
 - 3.4.6. Controller
 - 3.5. Process Attributes
 - Capacitance and Dead Time
 - 3.5.1. Capacitance
 - 3.5.2. Dead Time
 - 3.6. Process Dynamic Response
 - 3.7. Process Modelling and Simulation
 - 3.7.1. First-Order Systems
 - 3.7.2. Second-Order and Higher Order Systems
 - 3.7.3. Simple System Analysis
 - 3.7.4. Classical Modelling for Control Approaches
 - 3.7.5. The Modern Modelling for Control Approach
 - References
 - 4. Basic Control Modes
 - 4.1. On
 - Off Control
 - 4.2. Proportional (P-Only) Control
 - 4.3. Integral (I-Only) Control
 - 4.4. Proportional Plus Integral (PI) Control
 - 4.5. Derivative Action
 - 4.6. Proportional Plus Derivative (PD) Controller
 - 4.7. Proportional Integral Derivative (PID) Control
 - 4.8. Digital Electronic Controller Forms
 - 4.9. Choosing the Correct Controller
 - 4.10. Controller Hardware
 - References
 - 5. Tuning Feedback Controllers
 - 5.1. Quality of Control and Optimization
 - 5.1.1. Controller Response
 - 5.1.2. Error Performance Criteria
 - 5.2. Tuning Methods
 - 5.2.1.`Trial and Error' Method
 - 5.2.2. Process Reaction Curve Methods
 - 5.2.3. Constant Cycling Methods
 - References
 - 6. Advanced Topics in Classical Automatic Control
 - 6.1. Cascade Control
 - 6.1.1. Starting up a Cascade System
 - 6.2. Feedforward Control
 - 6.3. Ratio Control
 - 6.4. Override Control (Auto Selectors)
 - 6.4.1. Protection of Equipment
 - 6.4.2. Auctioneering
 - 6.4.3. Redundant Instrumentation
 - 6.4.4. Artificial Measurements
 - 6.5. Split Range Control
 - References
 - 7.Common Control Loops
 - 7.1. Flow Loops
 - 7.2. Liquid Pressure Loops
 - 7.3. Liquid Level Control
 - 7.3.1. Proportional-Only Control for Integrating Processes
 - 7.3.2. PI Controller Tuning for Integrating Process
 - 7.4. Gas Pressure Loops
 - 7.5. Temperature Control Loops
 - 7.5.1. The Endothermic Reactor Temperature Control Loop
 - 7.5.2. The Exothermic Reactor Temperature Control Loop
 - 7.6. Pump Control
 - 7.7.Compressor Control
 - 7.7.1. Reciprocating Compressor Control
 - 7.7.2. Centrifugal Compressor Control
 - 7.8. Boiler Control
 - 7.8.1.Combustion Control
 - 7.8.2. Water Drum Level Control
 - 7.8.3. Water Drum Pressure Control
 - 7.8.4. Steam Temperature Control
 - References
 - 8. Distillation Column Control
 - 8.1. Basic Terms
 - 8.2. Steady-State and Dynamic Degrees of Freedom
 - 8.3. Control System Objectives and Design Considerations
 - 8.4. Methodology for Selection of a Controller Structure
 - 8.5. Level, Pressure, Temperature and Composition Control
 - 8.5.1. Level Control
 - 8.5.2. Pressure Control
 - 8.5.3. Temperature Control
 - 8.5.4.Composition Control
 - 8.6. Optimizing Control
 - 8.6.1. Example: Benzene Column with a Rectifying Section Sidestream
 - 8.7. Distillation Control Scheme Design Using Steady-State Models
 - 8.7.1. Screening Control Strategies via Steady-State Simulation
 - 8.7.2.A Case Study
 - The Workshop Stabilizer
 - 8.7.3. Respecifying Simulation Specifications
 - 8.7.4. Mimicking the Behaviour of Analysers or Lab Analyses
 - 8.7.5. Developing an Economic Profitability Function
 - 8.7.6. Evaluating the Candidate Strategies
 - 8.7.7. Evaluating the Candidate Strategies under Disturbances
 - 8.7.8. Evaluating Sensor Strategies
 - 8.7.9. Example Summary
 - 8.8. Distillation Control Scheme Design Using Dynamic Models
 - References
 - 9. Using Steady-State Methods in a Multi-loop Control Scheme
 - 9.1. Variable Pairing
 - 9.2. The Relative Gain Array
 - 9.2.1. Calculating the RGA with Experiments
 - 9.2.2. Calculating the RGA Using the Steady-State Gain Matrix
 - 9.2.3. Interpreting the RGA
 - 9.3. Niederlinski Index
 - 9.4. Decoupling Control Loops
 - 9.4.1. Singular Value Decomposition
 - 9.5. Tuning the Controllers for Multi-loop Systems
 - 9.6. Practical Examples
 - 9.6.1. Example 1: A Two-Stream Mixer
 - 9.6.2. Example 2: A Conventional Distillation Column
 - 9.7. Summary
 - References
 - 10. Plant-Wide Control
 - 10.1. Short-Term versus Long-Term Control Focus
 - 10.2. Cascaded Units
 - 10.3. Recycle Streams
 - 10.4. General Considerations for Plant-Wide Control
 - References
 - 11. Advanced Process Control
 - 11.1. Advanced Process Control
 - 11.2. Model Predictive Control
 - 11.3. Dynamic Matrix Control
 - 11.4. General Considerations for Model Predictive Control Implementation
 - References.
 


