Cargando…

A real time approach to process control /

"With resources at a premium, and ecological concerns paramount, the need for clean, efficient and low-cost processes is one of the most critical challenges facing chemical engineers. The ability to control these processes, optimizing one, two or several variables has the potential to make more...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Svrcek, William Y.
Otros Autores: Mahoney, Donald P., Young, Brent R.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex, United Kingdom : Wiley, 2014.
Edición:Third edition.
Colección:Engineering professional collection
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Machine generated contents note: 1.A Brief History of Process Control and Process Simulation
  • 1.1. Process Control
  • 1.2. Process Simulation
  • References
  • 2. Process Control Hardware Fundamentals
  • 2.1. Control System Components
  • 2.2. Primary Elements
  • 2.2.1. Pressure Measurement
  • 2.2.2. Level Measurement
  • 2.2.3. Temperature Measurement
  • 2.2.4. Flow Measurement
  • 2.2.5. Quality Measurement and Analytical Instrumentation
  • 2.2.6. Application Range and Accuracy of Different Sensors
  • 2.3. Final Control Elements
  • 2.3.1. Control Valves
  • References
  • 3. Fundamentals of Single-Input/Single-Output Systems
  • 3.1. Open Loop Control
  • 3.2. Disturbances
  • 3.3. Feedback Control
  • Overview
  • 3.4. Feedback Control
  • A Closer Look
  • 3.4.1. Positive and Negative Feedbacks
  • 3.4.2. Control Elements
  • 3.4.3. Sensor/Transmitter
  • 3.4.4. Processes
  • 3.4.5. Final Control Element
  • 3.4.6. Controller
  • 3.5. Process Attributes
  • Capacitance and Dead Time
  • 3.5.1. Capacitance
  • 3.5.2. Dead Time
  • 3.6. Process Dynamic Response
  • 3.7. Process Modelling and Simulation
  • 3.7.1. First-Order Systems
  • 3.7.2. Second-Order and Higher Order Systems
  • 3.7.3. Simple System Analysis
  • 3.7.4. Classical Modelling for Control Approaches
  • 3.7.5. The Modern Modelling for Control Approach
  • References
  • 4. Basic Control Modes
  • 4.1. On
  • Off Control
  • 4.2. Proportional (P-Only) Control
  • 4.3. Integral (I-Only) Control
  • 4.4. Proportional Plus Integral (PI) Control
  • 4.5. Derivative Action
  • 4.6. Proportional Plus Derivative (PD) Controller
  • 4.7. Proportional Integral Derivative (PID) Control
  • 4.8. Digital Electronic Controller Forms
  • 4.9. Choosing the Correct Controller
  • 4.10. Controller Hardware
  • References
  • 5. Tuning Feedback Controllers
  • 5.1. Quality of Control and Optimization
  • 5.1.1. Controller Response
  • 5.1.2. Error Performance Criteria
  • 5.2. Tuning Methods
  • 5.2.1.`Trial and Error' Method
  • 5.2.2. Process Reaction Curve Methods
  • 5.2.3. Constant Cycling Methods
  • References
  • 6. Advanced Topics in Classical Automatic Control
  • 6.1. Cascade Control
  • 6.1.1. Starting up a Cascade System
  • 6.2. Feedforward Control
  • 6.3. Ratio Control
  • 6.4. Override Control (Auto Selectors)
  • 6.4.1. Protection of Equipment
  • 6.4.2. Auctioneering
  • 6.4.3. Redundant Instrumentation
  • 6.4.4. Artificial Measurements
  • 6.5. Split Range Control
  • References
  • 7.Common Control Loops
  • 7.1. Flow Loops
  • 7.2. Liquid Pressure Loops
  • 7.3. Liquid Level Control
  • 7.3.1. Proportional-Only Control for Integrating Processes
  • 7.3.2. PI Controller Tuning for Integrating Process
  • 7.4. Gas Pressure Loops
  • 7.5. Temperature Control Loops
  • 7.5.1. The Endothermic Reactor Temperature Control Loop
  • 7.5.2. The Exothermic Reactor Temperature Control Loop
  • 7.6. Pump Control
  • 7.7.Compressor Control
  • 7.7.1. Reciprocating Compressor Control
  • 7.7.2. Centrifugal Compressor Control
  • 7.8. Boiler Control
  • 7.8.1.Combustion Control
  • 7.8.2. Water Drum Level Control
  • 7.8.3. Water Drum Pressure Control
  • 7.8.4. Steam Temperature Control
  • References
  • 8. Distillation Column Control
  • 8.1. Basic Terms
  • 8.2. Steady-State and Dynamic Degrees of Freedom
  • 8.3. Control System Objectives and Design Considerations
  • 8.4. Methodology for Selection of a Controller Structure
  • 8.5. Level, Pressure, Temperature and Composition Control
  • 8.5.1. Level Control
  • 8.5.2. Pressure Control
  • 8.5.3. Temperature Control
  • 8.5.4.Composition Control
  • 8.6. Optimizing Control
  • 8.6.1. Example: Benzene Column with a Rectifying Section Sidestream
  • 8.7. Distillation Control Scheme Design Using Steady-State Models
  • 8.7.1. Screening Control Strategies via Steady-State Simulation
  • 8.7.2.A Case Study
  • The Workshop Stabilizer
  • 8.7.3. Respecifying Simulation Specifications
  • 8.7.4. Mimicking the Behaviour of Analysers or Lab Analyses
  • 8.7.5. Developing an Economic Profitability Function
  • 8.7.6. Evaluating the Candidate Strategies
  • 8.7.7. Evaluating the Candidate Strategies under Disturbances
  • 8.7.8. Evaluating Sensor Strategies
  • 8.7.9. Example Summary
  • 8.8. Distillation Control Scheme Design Using Dynamic Models
  • References
  • 9. Using Steady-State Methods in a Multi-loop Control Scheme
  • 9.1. Variable Pairing
  • 9.2. The Relative Gain Array
  • 9.2.1. Calculating the RGA with Experiments
  • 9.2.2. Calculating the RGA Using the Steady-State Gain Matrix
  • 9.2.3. Interpreting the RGA
  • 9.3. Niederlinski Index
  • 9.4. Decoupling Control Loops
  • 9.4.1. Singular Value Decomposition
  • 9.5. Tuning the Controllers for Multi-loop Systems
  • 9.6. Practical Examples
  • 9.6.1. Example 1: A Two-Stream Mixer
  • 9.6.2. Example 2: A Conventional Distillation Column
  • 9.7. Summary
  • References
  • 10. Plant-Wide Control
  • 10.1. Short-Term versus Long-Term Control Focus
  • 10.2. Cascaded Units
  • 10.3. Recycle Streams
  • 10.4. General Considerations for Plant-Wide Control
  • References
  • 11. Advanced Process Control
  • 11.1. Advanced Process Control
  • 11.2. Model Predictive Control
  • 11.3. Dynamic Matrix Control
  • 11.4. General Considerations for Model Predictive Control Implementation
  • References.