|
|
|
|
LEADER |
00000cam a2200000M 4500 |
001 |
OR_ocn853607659 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
130718s2013 mau ob u001 0 eng d |
040 |
|
|
|a NhCcYBP
|b eng
|e pn
|c N15
|d YDXCP
|d B24X7
|d STF
|d OCLCO
|d UMI
|d DEBSZ
|d OCLCQ
|d OCLCF
|d OCLCQ
|d COO
|d LIV
|d OCLCQ
|d CEF
|d INT
|d VT2
|d OCLCQ
|d AU@
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 859794557
|a 966397990
|
020 |
|
|
|a 9780124047242
|
020 |
|
|
|a 0124047246
|
020 |
|
|
|a 0124045766
|
020 |
|
|
|a 9780124045767
|
020 |
|
|
|z 9780124045767
|
029 |
1 |
|
|a AU@
|b 000052162580
|
029 |
1 |
|
|a AU@
|b 000053294092
|
029 |
1 |
|
|a DEBBG
|b BV041433006
|
029 |
1 |
|
|a DEBSZ
|b 39828962X
|
029 |
1 |
|
|a GBVCP
|b 76702334X
|
035 |
|
|
|a (OCoLC)853607659
|z (OCoLC)859794557
|z (OCoLC)966397990
|
037 |
|
|
|a CL0500000316
|b Safari Books Online
|
050 |
|
4 |
|a QA76.9.D32
|b B47 2013eb
|
082 |
0 |
4 |
|a 005.74
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Berman, Jules J.
|
245 |
1 |
0 |
|a Principles of big data :
|b preparing, sharing, and analyzing complex information.
|
260 |
|
|
|a BOSTON
|b MORGAN KAUFMANN
|c 2013.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g Machine generated contents note:
|g 1.
|t Providing Structure to Unstructured Data --
|t Background --
|t Machine Translation --
|t Autocoding --
|t Indexing --
|t Term Extraction --
|g 2.
|t Identification, Deidentification, and Reidentification --
|t Background --
|t Features of an Identifier System --
|t Registered Unique Object Identifiers --
|t Really Bad Identifier Methods --
|t Embedding Information in an Identifier: Not Recommended --
|t One-Way Hashes --
|t Use Case: Hospital Registration --
|t Deidentification --
|t Data Scrubbing --
|t Reidentification --
|t Lessons Learned --
|g 3.
|t Ontologies and Semantics Background --
|t Classifications, the Simplest of Ontologies --
|t Ontologies, Classes with Multiple Parents --
|t Choosing a Class Model --
|t Introduction to Resource Description Framework Schema --
|t Common Pitfalls in Ontology Development --
|g 4.
|t Introspection --
|t Background --
|t Knowledge of Self --
|t eXtensible Markup Language --
|t Introduction to Meaning --
|t Namespaces and the Aggregation of Meaningful Assertions --
|t Resource Description Framework Triples --
|t Reflection --
|t Use Case: Trusted Time Stamp --
|t Summary --
|g 5.
|t Data Integration and Software Interoperability --
|t Background --
|t Committee to Survey Standards --
|t Standard Trajectory --
|t Specifications and Standards --
|t Versioning --
|t Compliance Issues --
|t Interfaces to Big Data Resources --
|g 6.
|t Immutability and Immortality --
|t Background --
|t Immutability and Identifiers --
|t Data Objects --
|t Legacy Data --
|t Data Born from Data --
|t Reconciling Identifiers across Institutions --
|t Zero-Knowledge Reconciliation --
|t Curator's Burden --
|g 7.
|t Measurement --
|t Background --
|t Counting --
|t Gene Counting --
|t Dealing with Negations --
|t Understanding Your Control --
|t Practical Significance of Measurements --
|t Obsessive-Compulsive Disorder: The Mark of a Great Data Manager --
|g 8.
|t Simple but Powerful Big Data Techniques --
|t Background --
|t Look at the Data --
|t Data Range --
|t Denominator --
|t Frequency Distributions --
|t Mean and Standard Deviation --
|t Estimation Only Analyses --
|t Use Case: Watching Data Trends with Google Ngrams --
|t Use Case: Estimating Movie Preferences --
|g 9.
|t Analysis --
|t Background --
|t Analytic Tasks --
|t Clustering, Classifying, Recommending, and Modeling --
|t Data Reduction --
|t Normalizing and Adjusting Data --
|t Big Data Software: Speed and Scalability --
|t Find Relationships, Not Similarities --
|g 10.
|t Special Considerations in Big Data Analysis --
|t Background --
|t Theory in Search of Data --
|t Data in Search of a Theory --
|t Overfitting --
|t Bigness Bias --
|t Too Much Data --
|t Fixing Data --
|t Data Subsets in Big Data: Neither Additive nor Transitive --
|t Additional Big Data Pitfalls --
|g 11.
|t Stepwise Approach to Big Data Analysis --
|t Background --
|g Step 1
|t Question Is Formulated --
|g Step 2
|t Resource Evaluation --
|g Step 3
|t Question Is Reformulated --
|g Step 4
|t Query Output Adequacy --
|g Step 5
|t Data Description --
|g Step 6
|t Data Reduction --
|g Step 7
|t Algorithms Are Selected, If Absolutely Necessary --
|g Step 8
|t Results Are Reviewed and Conclusions Are Asserted --
|g Step 9
|t Conclusions Are Examined and Subjected to Validation --
|g 12.
|t Failure --
|t Background --
|t Failure Is Common --
|t Failed Standards --
|t Complexity --
|t When Does Complexity Help? --
|t When Redundancy Fails --
|t Save Money; Don't Protect Harmless Information --
|t After Failure --
|t Use Case: Cancer Biomedical Informatics Grid, a Bridge Too Far --
|g 13.
|t Legalities --
|t Background --
|t Responsibility for the Accuracy and Legitimacy of Contained Data --
|t Rights to Create, Use, and Share the Resource --
|t Copyright and Patent Infringements Incurred by Using Standards --
|t Protections for Individuals --
|t Consent --
|t Unconsented Data --
|t Good Policies Are a Good Policy --
|t Use Case: The Havasupai Story --
|g 14.
|t Societal Issues --
|t Background --
|t How Big Data Is Perceived --
|t Necessity of Data Sharing, Even When It Seems Irrelevant --
|t Reducing Costs and Increasing Productivity with Big Data --
|t Public Mistrust --
|t Saving Us from Ourselves --
|t Hubris and Hyperbole --
|g 15.
|t Future --
|t Background --
|t Last Words.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Database management.
|
650 |
|
6 |
|a Données volumineuses.
|
650 |
|
6 |
|a Bases de données
|x Gestion.
|
650 |
|
7 |
|a Big data.
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Database management.
|2 fast
|0 (OCoLC)fst00888037
|
776 |
0 |
8 |
|i Print version:
|a Berman, Jules J.
|t Principles of big data.
|d Amsterdam : Elsevier, Morgan Kaufmann, [2013]
|z 9780124045767
|w (DLC) 2013006421
|w (OCoLC)841050173
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9780124045767/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Books 24x7
|b B247
|n bks00054056
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 10745431
|
994 |
|
|
|a 92
|b IZTAP
|