Tools for signal compression /
This book presents tools and algorithms required to compress/uncompress signals such as speech and music. These algorithms are largely used in mobile phones, DVD players, HDTV sets, etc. In a first rather theoretical part, this book presents the standard tools used in compression systems: scalar and...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés Francés |
Publicado: |
London : Hoboken, N.J. :
ISTE ; Wiley,
2011.
|
Colección: | ISTE publications.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: pt. 1 TOOLS FOR SIGNAL COMPRESSION
- ch. 1 Scalar Quantization
- 1.1. Introduction
- 1.2. Optimum scalar quantization
- 1.2.1. Necessary conditions for optimization
- 1.2.2. Quantization error power
- 1.2.3. Further information
- 1.2.3.1. Lloyd-Max algorithm
- 1.2.3.2. Non-linear transformation
- 1.2.3.3. Scale factor
- 1.3. Predictive scalar quantization
- 1.3.1. Principle
- 1.3.2. Reminders on the theory of linear prediction
- 1.3.2.1. Introduction: least squares minimization
- 1.3.2.2. Theoretical approach
- 1.3.2.3. Comparing the two approaches
- 1.3.2.4. Whitening filter
- 1.3.2.5. Levinson algorithm
- 1.3.3. Prediction gain
- 1.3.3.1. Definition
- 1.3.4. Asymptotic value of the prediction gain
- 1.3.5. Closed-loop predictive scalar quantization
- ch. 2 Vector Quantization
- 2.1. Introduction.
- 2.2. Rationale
- 2.3. Optimum codebook generation
- 2.4. Optimum quantizer performance
- 2.5. Using the quantizer
- 2.5.1. Tree-structured vector quantization
- 2.5.2. Cartesian product vector quantization
- 2.5.3. Gain-shape vector quantization
- 2.5.4. Multistage vector quantization
- 2.5.5. Vector quantization by transform
- 2.5.6. Algebraic vector quantization
- 2.6. Gain-shape vector quantization
- 2.6.1. Nearest neighbor rule
- 2.6.2. Lloyd-Max algorithm
- ch. 3 Sub-band Transform Coding
- 3.1. Introduction
- 3.2. Equivalence of filter banks and transforms
- 3.3. Bit allocation
- 3.3.1. Defining the problem
- 3.3.2. Optimum bit allocation
- 3.3.3. Practical algorithm
- 3.3.4. Further information
- 3.4. Optimum transform
- 3.5. Performance
- 3.5.1. Transform gain
- 3.5.2. Simulation results
- ch. 4 Entropy Coding
- 4.1. Introduction
- 4.2. Noiseless coding of discrete, memoryless sources.
- 4.2.1. Entropy of a source
- 4.2.2. Coding a source
- 4.2.2.1. Definitions
- 4.2.2.2. Uniquely decodable instantaneous code
- 4.2.2.3. Kraft inequality
- 4.2.2.4. Optimal code
- 4.2.3. Theorem of noiseless coding of a memoryless discrete source
- 4.2.3.1. Proposition 1
- 4.2.3.2. Proposition 2
- 4.2.3.3. Proposition 3
- 4.2.3.4. Theorem
- 4.2.4. Constructing a code
- 4.2.4.1. Shannon code
- 4.2.4.2. Huffman algorithm
- 4.2.4.3. Example 1
- 4.2.5. Generalization
- 4.2.5.1. Theorem
- 4.2.5.2. Example 2
- 4.2.6. Arithmetic coding
- 4.3. Noiseless coding of a discrete source with memory
- 4.3.1. New definitions
- 4.3.2. Theorem of noiseless coding of a discrete source with memory
- 4.3.3. Example of a Markov source
- 4.3.3.1. General details
- 4.3.3.2. Example of transmitting documents by fax
- 4.4. Scalar quantizer with entropy constraint
- 4.4.1. Introduction
- 4.4.2. Lloyd-Max quantizer
- 4.4.3. Quantizer with entropy constraint.
- 4.4.3.1. Expression for the entropy
- 4.4.3.2. Jensen inequality
- 4.4.3.3. Optimum quantizer
- 4.4.3.4. Gaussian source
- 4.5. Capacity of a discrete memoryless channel
- 4.5.1. Introduction
- 4.5.2. Mutual information
- 4.5.3. Noisy-channel coding theorem
- 4.5.4. Example: symmetrical binary channel
- 4.6. Coding a discrete source with a fidelity criterion
- 4.6.1. Problem
- 4.6.2. Rate-distortion function
- 4.6.3. Theorems
- 4.6.3.1. Source coding theorem
- 4.6.3.2. Combined source-channel coding
- 4.6.4. Special case: quadratic distortion measure
- 4.6.4.1. Shannon's lower bound for a memoryless source
- 4.6.4.2. Source with memory
- 4.6.5. Generalization
- pt. 2 AUDIO SIGNAL APPLICATIONS
- ch. 5 Introduction to Audio Signals
- 5.1. Speech signal characteristics
- 5.2. Characteristics of music signals
- 5.3. Standards and recommendations
- 5.3.1. Telephone-band speech signals
- 5.3.1.1. Public telephone network.
- 5.3.1.2. Mobile communication
- 5.3.1.3. Other applications
- 5.3.2. Wideband speech signals
- 5.3.3. High-fidelity audio signals
- 5.3.3.1. MPEG-1
- 5.3.3.2. MPEG-2
- 5.3.3.3. MPEG-4
- 5.3.3.4. MPEG-7 and MPEG-21
- 5.3.4. Evaluating the quality
- ch. 6 Speech Coding
- 6.1. PCM and ADPCM coders
- 6.2. The 2.4 bit/s LPC-10 coder
- 6.2.1. Determining the filter coefficients
- 6.2.2. Unvoiced sounds
- 6.2.3. Voiced sounds
- 6.2.4. Determining voiced and unvoiced sounds
- 6.2.5. Bit rate constraint
- 6.3. The CELP coder
- 6.3.1. Introduction
- 6.3.2. Determining the synthesis filter coefficients
- 6.3.3. Modeling the excitation
- 6.3.3.1. Introducing a perceptual factor
- 6.3.3.2. Selecting the excitation model
- 6.3.3.3. Filtered codebook
- 6.3.3.4. Least squares minimization
- 6.3.3.5. Standard iterative algorithm
- 6.3.3.6. Choosing the excitation codebook
- 6.3.3.7. Introducing an adaptive codebook.
- 6.3.4. Conclusion
- ch. 7 Audio Coding
- 7.1. Principles of "perceptual coders"
- 7.2. MPEG-1 layer 1 coder
- 7.2.1. Time/frequency transform
- 7.2.2. Psychoacoustic modeling and bit allocation
- 7.2.3. Quantization
- 7.3. MPEG-2 AAC coder
- 7.4. Dolby AC-3 coder
- 7.5. Psychoacoustic model: calculating a masking threshold
- 7.5.1. Introduction
- 7.5.2. The ear
- 7.5.3. Critical bands
- 7.5.4. Masking curves
- 7.5.5. Masking threshold
- ch. 8 Audio Coding: Additional Information
- 8.1. Low bit rate/acceptable quality coders
- 8.1.1. Tool one: SBR
- 8.1.2. Tool two: PS
- 8.1.2.1. Historical overview
- 8.1.2.2. Principle of PS audio coding
- 8.1.2.3. Results
- 8.1.3. Sound space perception
- 8.2. High bit rate lossless or almost lossless coders
- 8.2.1. Introduction
- 8.2.2. ISO/IEC MPEG-4 standardization
- 8.2.2.1. Principle
- 8.2.2.2. Some details
- ch. 9 Stereo Coding: A Synthetic Presentation.
- 9.1. Basic hypothesis and notation
- 9.2. Determining the inter-channel indices
- 9.2.1. Estimating the power and the intercovariance
- 9.2.2. Calculating the inter-channel indices
- 9.2.3. Conclusion
- 9.3. Downmixing procedure
- 9.3.1. Development in the time domain
- 9.3.2. In the frequency domain
- 9.4. At the receiver
- 9.4.1. Stereo signal reconstruction
- 9.4.2. Power adjustment
- 9.4.3. Phase alignment
- 9.4.4. Information transmitted via the channel
- 9.5. Draft International Standard
- pt. 3 MATLAB® PROGRAMS
- ch. 10 A Speech Coder
- 10.1. Introduction
- 10.2. Script for the calling function
- 10.3. Script for called functions
- ch. 11 A Music Coder
- 11.1. Introduction
- 11.2. Script for the calling function
- 11.3. Script for called functions.