Cargando…

A text book of applied physics /

Applied Physics is designed to cater to the needs of first year undergraduate engineering students of Jawaharlal Nehru Technical University (J.N.T.U). Written in a lucid style, this book assimilates the best practices of conceptual pedagogy, dealin.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Naidu, S. Mani
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chennai : Pearson, ©2010.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Cover
  • Contents
  • Foreword
  • Preface
  • Acknowledgements
  • Road Map to the Syllabus
  • Chapter 1: Bonding in Solids
  • 1.1 Different types of bonding in solids
  • 1.2 Cohesive energy and estimation of cohesiveenergy of ionic solids
  • 1.3. Estimation of cohesive energy of NaCl molecule in a solid
  • 1.4 Madelung constant
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 2: Crystal Structures
  • 2.1 Introduction
  • 2.2 Space lattice (or) crystal lattice
  • 2.3 The basis and crystal structure
  • 2.4 Unit cell and lattice parameters
  • 2.5 Crystal systems and Bravais lattices
  • 2.6 Structure and packing fractions of simplecubic [SC] structure
  • 2.7 Structure and packing fractions of body-centredcubic structure [BCC]
  • 2.8 Structure and packing fractions of face-centredcubic [FCC] structure
  • 2.9 Diamond cubic structure
  • 2.10 NaCl crystal structure
  • 2.11 Caesium chloride [CsCl] structure
  • 2.12 Zinc sulphide [ZnS] structure
  • 2.13 Stacking sequence in metallic crystals
  • 2.14 Calculation of lattice constant
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 3: Crystal Planes, X-ray Diffraction and Defects in Solids
  • 3.1 Crystal planes, directions and Miller indices
  • 3.2 Distance of separation between successive hkl planes
  • 3.3 Imperfections in crystals
  • 3.4 Energy for the formation of a vacancy and number of vacancies at equilibrium concentration
  • 3.5 Diffraction of X-rays by crystal planes and Bragg's law
  • 3.6 Powder method
  • 3.7 Laue method
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 4: Elements of Statistical Mechanics and Principles of Quantum Mechanics
  • 4.1 Introduction
  • 4.2 Phase space
  • 4.3 Maxwell-Boltzmann distribution
  • 4.4 Fermi-Dirac distribution.
  • 4.5 Bose-Einstein distribution
  • 4.6 Comparison of Maxwell-Boltzmann,Fermi-Dirac and Bose-Einstein distributions
  • 4.7 Photon gas
  • 4.8 Concept of electron gas and Fermi energy
  • 4.9 Density of electron states
  • 4.10 Black body radiation
  • 4.11 Waves and particles-de Brogliehypothesis-Matter waves
  • Matter waves
  • Properties of matter waves
  • 4.12 Relativistic correction
  • 4.13 Planck's quantum theory of black body radiation
  • 4.14 Experimental study of matter waves
  • 4.14 Schrödinger's time-independent wave equation
  • 4.15 Heisenberg uncertainty principle
  • 4.16 Physical significance of the wave function
  • 4.17 Particle in a potential box
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 5: Electron Theory of Metals
  • 5.1 Introduction
  • 5.2 Classical free electron theory of metals
  • 5.3 Relaxation time, mean free path, mean collision time and drift velocity
  • 5.4 Fermi-Dirac distribution
  • 5.5 Quantum free electron theory of electrical conduction
  • 5.6 Sources of electrical resistance
  • 5.7 Band theory of solids
  • 5.8 Bloch theorem
  • 5.9 Origin of energy bands formation in solids
  • 5.10 Velocity and effective mass of an electron
  • 5.11 Distinction between metals, semiconductors and insulators
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 6: Dielectric Properties
  • 6.1 Introduction
  • 6.2 Dielectric constant
  • 6.3 Internal or local field
  • 6.4 Clausius-Mosotti relation
  • 6.5 Orientational, ionic and electronic polarizations
  • 6.6 Frequency dependence of polarizability: (Dielectrics in alternating fields)
  • 6.7 Piezoelectricity
  • 6.8 Ferroelectricity
  • 6.9 Frequency dependence of dielectric constant
  • Orientational polarization
  • Ionic polarization
  • Electronic polarization.
  • 6.10 Important requirements of insulators
  • (a) Electrical requirements
  • (b) Thermal requirements
  • (c) Mechanical requirements
  • (d) Chemical requirements
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 7: Magnetic Properties
  • 7.1 Magnetic permeability
  • 7.2 Magnetization (M )
  • 7.3 Origin of magnetic moment-Bohrmagneton-electron spin
  • (i) Magnetic moment due to orbital motion of electrons and orbital angular momentum
  • (ii) Magnetic moment due to spin of the electrons
  • (iii) Magnetic moment due to nuclear spin
  • 7.4 Classification of magnetic materials
  • (i) Diamagnetic material
  • (ii) Paramagnetic materials
  • (iii) Ferromagnetic materials
  • (iv) Anti-ferromagnetic materials
  • (v) Ferrimagnetic materials [Ferrites]
  • 7.5 Classical theory of diamagnetism [Langevin theory]
  • 7.6 Theory of paramagnetism
  • 7.7 Domain theory of ferromagnetism
  • Effect of temperature
  • Experimental evidences for domain structure
  • Origin of [Ferromagnetic] domains
  • Explanation for origin of domains
  • 7.8 Hysteresis curve
  • 7.9 Anti-ferromagnetic substances
  • 7.10 Ferrimagnetic substances [Ferrites]
  • 7.11 Soft and hard magnetic materials
  • (a) Soft magnetic materials
  • (b) Hard magnetic materials
  • Comparison between soft and hard magnetic materials
  • 7.12 Applications of ferrites
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 8: Semiconductors and Physics of Semiconductor Devices
  • 8.1 Introduction
  • 8.2 Intrinsic semiconductors-carrier concentration
  • Electron concentration
  • For hole concentration
  • To evaluate Fermienergy
  • To find intrinsic concentration (NI )
  • 8.3 Electrical conductivity of a semiconductor
  • To find energy gap of a semiconductor
  • Increase of temperature to double the conductivity.
  • 8.4 Extrinsic semiconductors
  • 8.5 Carrier concentration in extrinsic semiconductors
  • 8.6 Minority carrier life time
  • 8.7 Drift and diffusion currents
  • (a) Drift current
  • (b) Diffusion current
  • 8.8 Einstein's relations
  • 8.9 Continuity equation
  • 8.10 Hall effect
  • 8.11 Direct and indirect band gap semiconductors
  • 8.12 Formation of p-n junction
  • 8.13 Energy band diagram of p-n diode
  • 8.14 Diode equation
  • 8.15 p-n junction biasing
  • 8.16 V-I characteristics of p-n diode
  • 8.17 p-n diode rectifi er
  • 8.18 Light emitting diode [LED]
  • 8.19 Liquid crystal display (LCD)
  • 8.20 Photodiodes
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 9: Superconductivity
  • 9.1 Introduction
  • 9.2 General features of superconductors
  • 9.3 Type-I and Type-II superconductors
  • 9.4 Penetration depth
  • 9.5 Flux quantization
  • 9.6 Quantum tunnelling
  • 9.7 Josephson's effect
  • 9.8 BCS theory
  • Description
  • Coherent length
  • BCS ground state
  • 9.9 Applications of superconductivity
  • 9.9.1 Magnetic applications
  • 9.9.2 Electrical applications
  • 9.9.3 Computer applications
  • 9.9.4 Josephson junction devices
  • 9.9.5 Maglev vehicles
  • 9.9.6 Medical applications
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 10: Lasers
  • 10.1 Introduction
  • 10.2 Characteristics of laser radiation
  • 10.3 Spontaneous and stimulated emission
  • 10.4 Einstein's coefficients
  • 10.5 Population inversion
  • 10.6 Helium-Neon gas [He-Ne] laser
  • 10.7 Ruby laser
  • 10.8 Semiconductor lasers
  • 10.9 Carbon dioxide laser
  • 10.10 Applications of lasers
  • Formula
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 11: Fibre Optics
  • 11.1 Introduction.
  • 11.2 Principle of optical fibre, acceptance angle and acceptance cone
  • 11.3 Numerical aperture (NA)
  • 11.4 Step index fibres and graded index fibres-transmission of signals in them
  • 11.5 Differences between step index fibres and graded index fibres
  • 11.6 Differences between single mode fibres and multimode fibres
  • 11.7 Attenuation in optical fibres
  • 11.8 Optical fibres in communication
  • 11.9 Advantages of optical fibres in communication
  • 11.10 Fibre optic sensing applications
  • (a) Displacement sensors
  • (b) Liquid level sensor
  • (c) Temperature and pressure sensor
  • (d) Chemical sensors
  • 11.11 Applications of optical fibres in medical field
  • Formulae
  • Solved Problems
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 12: Holography
  • 12.1 Introduction
  • 12.2 Basic principle of holography
  • 12.3 Recording of image on a holographic plate
  • 12.4 Reconstruction of image from a hologram
  • 12.5 Applications of holography
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 13: Acoustics of Buildings and Acoustic Quieting
  • 13.1 Introduction to acoustics of buildings
  • 13.2 Reverberation and time of reverberation
  • 13.3 Sabine's empirical formula for reverberation time
  • 13.4 Sabine's reverberation theory for reverberation time
  • 13.5 Absorption coefficient of sound and its measurement
  • Measurement
  • 13.6 Basic requirements of an acoustically good hall
  • 13.7 Factors affecting architectural acoustics and their remedies
  • 13.8 Acoustic quieting
  • Introduction
  • Aspects of Acoustic Quieting
  • 13.9 Methods of quieting
  • 13.10 Quieting for specific observers
  • 13.11 Muffler (or silencer)
  • 13.12 Sound proofing
  • Formulae
  • Solved Problem
  • Multiple Choice Questions
  • Answers
  • Review Questions
  • Chapter 14: Nanotechnology.