Cargando…

A text book of applied physics /

Applied Physics is designed to cater to the needs of first year undergraduate engineering students of Jawaharlal Nehru Technical University (J.N.T.U). Written in a lucid style, this book assimilates the best practices of conceptual pedagogy, dealin.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Naidu, S. Mani
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chennai : Pearson, ©2010.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn840429227
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 130422s2009 ii a o 000 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCO  |d COO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d CEF  |d WYU  |d UAB  |d C6I  |d CZL  |d OCLCQ 
020 |a 9788131775035 
020 |a 8131775038 
020 |a 8131724956 
020 |a 9788131724958 
020 |a 9788131791813 
020 |a 8131791815 
020 |z 9788131724958 
029 1 |a AU@  |b 000051433015 
029 1 |a DEBBG  |b BV041121524 
029 1 |a DEBSZ  |b 39676438X 
029 1 |a GBVCP  |b 785448209 
035 |a (OCoLC)840429227 
037 |a CL0500000210  |b Safari Books Online 
050 4 |a QC23.2  |b .N343 2009 
049 |a UAMI 
100 1 |a Naidu, S. Mani. 
245 1 2 |a A text book of applied physics /  |c S. Mani Naidu. 
246 3 |a Textbook of applied physics 
260 |a Chennai :  |b Pearson,  |c ©2010. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (Safari, viewed Apr. 17, 2013). 
505 0 |a Cover -- Contents -- Foreword -- Preface -- Acknowledgements -- Road Map to the Syllabus -- Chapter 1: Bonding in Solids -- 1.1 Different types of bonding in solids -- 1.2 Cohesive energy and estimation of cohesiveenergy of ionic solids -- 1.3. Estimation of cohesive energy of NaCl molecule in a solid -- 1.4 Madelung constant -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 2: Crystal Structures -- 2.1 Introduction -- 2.2 Space lattice (or) crystal lattice -- 2.3 The basis and crystal structure -- 2.4 Unit cell and lattice parameters -- 2.5 Crystal systems and Bravais lattices -- 2.6 Structure and packing fractions of simplecubic [SC] structure -- 2.7 Structure and packing fractions of body-centredcubic structure [BCC] -- 2.8 Structure and packing fractions of face-centredcubic [FCC] structure -- 2.9 Diamond cubic structure -- 2.10 NaCl crystal structure -- 2.11 Caesium chloride [CsCl] structure -- 2.12 Zinc sulphide [ZnS] structure -- 2.13 Stacking sequence in metallic crystals -- 2.14 Calculation of lattice constant -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 3: Crystal Planes, X-ray Diffraction and Defects in Solids -- 3.1 Crystal planes, directions and Miller indices -- 3.2 Distance of separation between successive hkl planes -- 3.3 Imperfections in crystals -- 3.4 Energy for the formation of a vacancy and number of vacancies at equilibrium concentration -- 3.5 Diffraction of X-rays by crystal planes and Bragg's law -- 3.6 Powder method -- 3.7 Laue method -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 4: Elements of Statistical Mechanics and Principles of Quantum Mechanics -- 4.1 Introduction -- 4.2 Phase space -- 4.3 Maxwell-Boltzmann distribution -- 4.4 Fermi-Dirac distribution. 
505 8 |a 4.5 Bose-Einstein distribution -- 4.6 Comparison of Maxwell-Boltzmann,Fermi-Dirac and Bose-Einstein distributions -- 4.7 Photon gas -- 4.8 Concept of electron gas and Fermi energy -- 4.9 Density of electron states -- 4.10 Black body radiation -- 4.11 Waves and particles-de Brogliehypothesis-Matter waves -- Matter waves -- Properties of matter waves -- 4.12 Relativistic correction -- 4.13 Planck's quantum theory of black body radiation -- 4.14 Experimental study of matter waves -- 4.14 Schrödinger's time-independent wave equation -- 4.15 Heisenberg uncertainty principle -- 4.16 Physical significance of the wave function -- 4.17 Particle in a potential box -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 5: Electron Theory of Metals -- 5.1 Introduction -- 5.2 Classical free electron theory of metals -- 5.3 Relaxation time, mean free path, mean collision time and drift velocity -- 5.4 Fermi-Dirac distribution -- 5.5 Quantum free electron theory of electrical conduction -- 5.6 Sources of electrical resistance -- 5.7 Band theory of solids -- 5.8 Bloch theorem -- 5.9 Origin of energy bands formation in solids -- 5.10 Velocity and effective mass of an electron -- 5.11 Distinction between metals, semiconductors and insulators -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 6: Dielectric Properties -- 6.1 Introduction -- 6.2 Dielectric constant -- 6.3 Internal or local field -- 6.4 Clausius-Mosotti relation -- 6.5 Orientational, ionic and electronic polarizations -- 6.6 Frequency dependence of polarizability: (Dielectrics in alternating fields) -- 6.7 Piezoelectricity -- 6.8 Ferroelectricity -- 6.9 Frequency dependence of dielectric constant -- Orientational polarization -- Ionic polarization -- Electronic polarization. 
505 8 |a 6.10 Important requirements of insulators -- (a) Electrical requirements -- (b) Thermal requirements -- (c) Mechanical requirements -- (d) Chemical requirements -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 7: Magnetic Properties -- 7.1 Magnetic permeability -- 7.2 Magnetization (M ) -- 7.3 Origin of magnetic moment-Bohrmagneton-electron spin -- (i) Magnetic moment due to orbital motion of electrons and orbital angular momentum -- (ii) Magnetic moment due to spin of the electrons -- (iii) Magnetic moment due to nuclear spin -- 7.4 Classification of magnetic materials -- (i) Diamagnetic material -- (ii) Paramagnetic materials -- (iii) Ferromagnetic materials -- (iv) Anti-ferromagnetic materials -- (v) Ferrimagnetic materials [Ferrites] -- 7.5 Classical theory of diamagnetism [Langevin theory] -- 7.6 Theory of paramagnetism -- 7.7 Domain theory of ferromagnetism -- Effect of temperature -- Experimental evidences for domain structure -- Origin of [Ferromagnetic] domains -- Explanation for origin of domains -- 7.8 Hysteresis curve -- 7.9 Anti-ferromagnetic substances -- 7.10 Ferrimagnetic substances [Ferrites] -- 7.11 Soft and hard magnetic materials -- (a) Soft magnetic materials -- (b) Hard magnetic materials -- Comparison between soft and hard magnetic materials -- 7.12 Applications of ferrites -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 8: Semiconductors and Physics of Semiconductor Devices -- 8.1 Introduction -- 8.2 Intrinsic semiconductors-carrier concentration -- Electron concentration -- For hole concentration -- To evaluate Fermienergy -- To find intrinsic concentration (NI ) -- 8.3 Electrical conductivity of a semiconductor -- To find energy gap of a semiconductor -- Increase of temperature to double the conductivity. 
505 8 |a 8.4 Extrinsic semiconductors -- 8.5 Carrier concentration in extrinsic semiconductors -- 8.6 Minority carrier life time -- 8.7 Drift and diffusion currents -- (a) Drift current -- (b) Diffusion current -- 8.8 Einstein's relations -- 8.9 Continuity equation -- 8.10 Hall effect -- 8.11 Direct and indirect band gap semiconductors -- 8.12 Formation of p-n junction -- 8.13 Energy band diagram of p-n diode -- 8.14 Diode equation -- 8.15 p-n junction biasing -- 8.16 V-I characteristics of p-n diode -- 8.17 p-n diode rectifi er -- 8.18 Light emitting diode [LED] -- 8.19 Liquid crystal display (LCD) -- 8.20 Photodiodes -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 9: Superconductivity -- 9.1 Introduction -- 9.2 General features of superconductors -- 9.3 Type-I and Type-II superconductors -- 9.4 Penetration depth -- 9.5 Flux quantization -- 9.6 Quantum tunnelling -- 9.7 Josephson's effect -- 9.8 BCS theory -- Description -- Coherent length -- BCS ground state -- 9.9 Applications of superconductivity -- 9.9.1 Magnetic applications -- 9.9.2 Electrical applications -- 9.9.3 Computer applications -- 9.9.4 Josephson junction devices -- 9.9.5 Maglev vehicles -- 9.9.6 Medical applications -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 10: Lasers -- 10.1 Introduction -- 10.2 Characteristics of laser radiation -- 10.3 Spontaneous and stimulated emission -- 10.4 Einstein's coefficients -- 10.5 Population inversion -- 10.6 Helium-Neon gas [He-Ne] laser -- 10.7 Ruby laser -- 10.8 Semiconductor lasers -- 10.9 Carbon dioxide laser -- 10.10 Applications of lasers -- Formula -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 11: Fibre Optics -- 11.1 Introduction. 
505 8 |a 11.2 Principle of optical fibre, acceptance angle and acceptance cone -- 11.3 Numerical aperture (NA) -- 11.4 Step index fibres and graded index fibres-transmission of signals in them -- 11.5 Differences between step index fibres and graded index fibres -- 11.6 Differences between single mode fibres and multimode fibres -- 11.7 Attenuation in optical fibres -- 11.8 Optical fibres in communication -- 11.9 Advantages of optical fibres in communication -- 11.10 Fibre optic sensing applications -- (a) Displacement sensors -- (b) Liquid level sensor -- (c) Temperature and pressure sensor -- (d) Chemical sensors -- 11.11 Applications of optical fibres in medical field -- Formulae -- Solved Problems -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 12: Holography -- 12.1 Introduction -- 12.2 Basic principle of holography -- 12.3 Recording of image on a holographic plate -- 12.4 Reconstruction of image from a hologram -- 12.5 Applications of holography -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 13: Acoustics of Buildings and Acoustic Quieting -- 13.1 Introduction to acoustics of buildings -- 13.2 Reverberation and time of reverberation -- 13.3 Sabine's empirical formula for reverberation time -- 13.4 Sabine's reverberation theory for reverberation time -- 13.5 Absorption coefficient of sound and its measurement -- Measurement -- 13.6 Basic requirements of an acoustically good hall -- 13.7 Factors affecting architectural acoustics and their remedies -- 13.8 Acoustic quieting -- Introduction -- Aspects of Acoustic Quieting -- 13.9 Methods of quieting -- 13.10 Quieting for specific observers -- 13.11 Muffler (or silencer) -- 13.12 Sound proofing -- Formulae -- Solved Problem -- Multiple Choice Questions -- Answers -- Review Questions -- Chapter 14: Nanotechnology. 
520 |a Applied Physics is designed to cater to the needs of first year undergraduate engineering students of Jawaharlal Nehru Technical University (J.N.T.U). Written in a lucid style, this book assimilates the best practices of conceptual pedagogy, dealin. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Physics  |v Textbooks. 
650 7 |a Physics.  |2 fast  |0 (OCoLC)fst01063025 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863 
776 0 8 |i Print version:  |a Mani, S. Naidu.  |t Text book of applied physics.  |d New Delhi, India : Pearson, 2009, ©2010  |z 9788131724958 
856 4 0 |u https://learning.oreilly.com/library/view/~/9788131724958/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP