Cargando…

Big data and business analytics /

""The chapters in this volume offer useful case studies, technical roadmaps, lessons learned, and a few prescriptions to 'do this, avoid that.'""--The Foreword by Joe LaCugna, Ph. D., Enterprise Analytics and Business Intelligence, Starbucks Coffee CompanyWith the growi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Liebowitz, Jay, 1957-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, 2013.
©2013
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Ch. 1. Architecting the enterprise via big data analytics / Joseph Betser and David Belanger
  • ch. 2. Jack and the big data beanstalk : capitalizing on a growing marketing opportunity / Tim Suther, Bill Burkart, and Jie Cheng
  • ch. 3. Frontiers of big data business analytics : patterns and cases in online marketing / Daqing Zhao
  • ch. 4. The intrinsic value of data / Omer Trajman
  • ch. 5. Finding big value in big data : unlocking the power of high-performance analytics / Paul Kent, Radhika Kulkarni, and Udo Sglavo
  • ch. 6. Competitors, intelligence, and big data / G. Scott Erickson and Helen N. Rothberg
  • ch. 7. Saving lives with big data : unlocking the hidden potential in electronic health records / Juergen Klenk, Yugal Sharma, and Jeni Fan
  • ch. 8. Innovation patterns and big data / Daniel Conway and Diego Klabjan
  • ch. 9. Big data at the U.S. Department of Transportation / Daniel Pitton
  • ch. 10. Putting big data at the heart of the decision-making process / Ian Thomas
  • ch. 11. Extracting useful information from multivariate temporal data / Artur Dubrawski
  • ch. 12. Large-scale time-series forecasting / Murray Stokely, Farzan Rohani, and Eric Tassone
  • ch. 13. Using big data and analytics to unlock generosity / Mike Bugembe
  • ch. 14. The use of bid data in healthcare / Katherine Marconi, Matt Dobra, and Charles Thompson
  • ch. 15. Big data : structured and unstructured / Arun K. Majumdar and John F. Sowa.