Ferroelectric dielectrics integrated on silicon /
This book describes up-to-date technology applied to high-K materials for More Than Moore applications, i.e. microsystems applied to microelectronics core technologies. After detailing the basic thermodynamic theory applied to high-K dielectrics thin films including extrinsic effects, this book emph...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE ; Wiley,
2011.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Cover; Title Page; Copyright Page; Table of Contents; Preface; Chapter 1. The Thermodynamic Approach; 1.1. Background; 1.2. The functions of state; 1.3. Linear equations, piezoelectricity; 1.4. Nonlinear equations, electrostriction; 1.5. Thermodynamic modeling of the ferroelectric-paraelectricphase transition; 1.5.1. Assumption on the elastic Gibbs energy; 1.5.2. Second-order transition; 1.5.3. Effect of stress; 1.5.4. First-order transition; 1.6. Conclusion; 1.7. Bibliography; Chapter 2. Stress Effect on Thin Films; 2.1. Introduction; 2.2. Modeling the system under consideration
- 2.3. Temperature-misfit strain phase diagrams for monodomain films2.3.1. Phase diagram construction from the Landau-Ginzburg-Devonshire theory; 2.3.2. Calculations limitations; 2.4. Domain stability map; 2.4.1. Presentation and description of the framework of study; 2.4.2. Main contributions to the total energy of a film; 2.4.3. Influence of thickness; 2.4.4. Macroscopic elastic energy for each type of tetragonal domain; 2.4.5. Indirect interaction energy; 2.4.6. Domain structures at equilibrium; 2.4.7. Domain stability map; 2.5. Temperature-misfit strain phase diagram for polydomain films
- 2.6. Discussion of the nature of the "misfit strain"2.6.1. Mechanical misfit strain; 2.6.2. Thermodynamic misfit strain; 2.6.3. As an illustration; 2.7. Conclusion; 2.8. Experimental validation of phase diagrams: state of the art; 2.9. Case study; 2.10. Results; 2.10.1. Evolution of the lattice parameters; 2.10.2. Associated stresses and strains; 2.11. Comparison between the experimental data and the temperature-misfit strain phase diagrams; 2.11.1. Thin film of PZT; 2.11.2. Thin layer of PbTiO3; 2.12. Conclusion; 2.13. Bibliography; Chapter 3. Deposition and Patterning Technologies
- 3.1. Deposition method3.1.1. Cathodic sputtering; 3.1.2. Ion beam sputtering; 3.1.3. Pulsed laser deposition; 3.1.4. The sol-gel process; 3.1.5. The MOCVD; 3.1.6. Molecular beam epitaxy; 3.2. Etching; 3.2.1. Wet etching; 3.2.2. Dry etching; 3.3. Contamination; 3.4. Monocrystalline thin-film transfer; 3.4.1. Smart CutTM technology; 3.4.2. Bonding/thinning; 3.4.3. Interest in the material in a thin layer; 3.4.4. State of the art of the domain/applications; 3.4.5. An exemplary implementation; 3.5. Design of experiments; 3.5.1. The assumptions; 3.5.2. Reproducibility
- 3.5.3. How can we reduce the number of experiments?3.5.4. A DOE example: PZT RF magnetron sputtering deposition; 3.6. Conclusion; 3.7. Bibliography; Chapter 4. Analysis Through X-ray Diffraction of Polycrystalline Thin Films; 4.1. Introduction; 4.2. Some reminders of X-ray diffraction and crystallography; 4.2.1. Nature of X-rays; 4.2.2. X-ray scattering and diffraction; 4.3. Application to powder or polycrystalline thin-films; 4.4. Phase analysis by X-ray diffraction; 4.4.1. Grazing incidence diffraction; 4.4.2. De-texturing; 4.4.3. Quantitative analysis