Cargando…

Introduction to stochastic analysis : integrals and differential equations /

This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, ra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mackevičius, Vigirdas
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE Ltd ; John Wiley, 2011.
Colección:Applied stochastic methods series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn828424615
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130225s2011 enka ob 001 0 eng d
010 |a  2011012249 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d IDEBK  |d OCLCF  |d UMI  |d UKDOC  |d DEBBG  |d YDXCP  |d OCLCA  |d OCLCQ  |d COO  |d OCLCQ  |d LOA  |d OCLCQ  |d MOR  |d PIFBY  |d OCLCQ  |d U3W  |d COCUF  |d STF  |d WRM  |d OCLCQ  |d ICG  |d INT  |d VT2  |d CEF  |d OCLCQ  |d WYU  |d OCLCQ  |d UAB  |d AU@  |d UKAHL  |d CNCEN  |d HS0  |d OCLCQ  |d UKCRE  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 876268782  |a 960200742  |a 961601121  |a 962586148  |a 988431960  |a 991926693  |a 1037704065  |a 1038642388  |a 1055374396  |a 1066654568  |a 1081221641  |a 1103254202  |a 1129335159  |a 1153006196  |a 1243575187 
020 |a 9781118603314  |q (electronic bk.) 
020 |a 1118603311  |q (electronic bk.) 
020 |a 9781118603246 
020 |a 1118603249 
020 |z 9781848213111 
020 |z 1848213115 
029 1 |a CHNEW  |b 000600434 
029 1 |a DEBBG  |b BV041907974 
029 1 |a DEBBG  |b BV042032052 
029 1 |a DEBSZ  |b 414175190 
029 1 |a NZ1  |b 16097846 
029 1 |a AU@  |b 000072993247 
035 |a (OCoLC)828424615  |z (OCoLC)876268782  |z (OCoLC)960200742  |z (OCoLC)961601121  |z (OCoLC)962586148  |z (OCoLC)988431960  |z (OCoLC)991926693  |z (OCoLC)1037704065  |z (OCoLC)1038642388  |z (OCoLC)1055374396  |z (OCoLC)1066654568  |z (OCoLC)1081221641  |z (OCoLC)1103254202  |z (OCoLC)1129335159  |z (OCoLC)1153006196  |z (OCoLC)1243575187 
037 |a CL0500000409  |b Safari Books Online 
050 4 |a QA274.2  |b .M33 2011eb 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.2/2  |2 22 
049 |a UAMI 
100 1 |a Mackevičius, Vigirdas. 
245 1 0 |a Introduction to stochastic analysis :  |b integrals and differential equations /  |c Vigirdas Mackevicius. 
260 |a London :  |b ISTE Ltd ;  |a Hoboken, NJ :  |b John Wiley,  |c 2011. 
300 |a 1 online resource (276 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a Applied stochastic methods series 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
520 |a This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion processes. The topics covered include Brownian motion; motivation of stochastic models with Brownian motion; Itô and Stratonovich stochastic integrals, Itô's formula; stochastic differential equations (SDEs); solutions of SDEs as Markov processes; application examples in physical sciences and finance; simulation of solutions of SDEs (strong and weak approximations). Exercises with hints and/or solutions are also provided. 
505 0 |a Cover; Title Page; Copyright Page; Table of Contents; Preface; Notation; Chapter 1. Introduction: Basic Notions of Probability Theory; 1.1. Probability space; 1.2. Random variables; 1.3. Characteristics of a random variable; 1.4. Types of random variables; 1.5. Conditional probabilities and distributions; 1.6. Conditional expectations as random variables; 1.7. Independent events and random variables; 1.8. Convergence of random variables; 1.9. Cauchy criterion; 1.10. Series of random variables; 1.11. Lebesgue theorem; 1.12. Fubini theorem; 1.13. Random processes; 1.14. Kolmogorov theorem 
505 8 |a Chapter 2. Brownian Motion2.1. Definition and properties; 2.2. White noise and Brownian motion; 2.3. Exercises; Chapter 3. Stochastic Models with Brownian Motion and White Noise; 3.1. Discrete time; 3.2. Continuous time; Chapter 4. Stochastic Integral with Respect to Brownian Motion; 4.1. Preliminaries. Stochastic integral with respect to a step process; 4.2. Definition and properties; 4.3. Extensions; 4.4. Exercises; Chapter 5. Itô's Formula; 5.1. Exercises; Chapter 6. Stochastic Differential Equations; 6.1. Exercises; Chapter 7. Itô Processes; 7.1. Exercises 
505 8 |a Chapter 8. Stratonovich Integral and Equations8.1. Exercises; Chapter 9. Linear Stochastic Differential Equations; 9.1. Explicit solution of a linear SDE; 9.2. Expectation and variance of a solution of an LSDE; 9.3. Other explicitly solvable equations; 9.4. Stochastic exponential equation; 9.5. Exercises; Chapter 10. Solutions of SDEs as Markov Diffusion Processes; 10.1. Introduction; 10.2. Backward and forward Kolmogorov equations; 10.3. Stationary density of a diffusion process; 10.4. Exercises; Chapter 11. Examples; 11.1. Additive noise: Langevin equation 
505 8 |a 11.2. Additive noise: general case11.3. Multiplicative noise: general remarks; 11.4. Multiplicative noise: Verhulst equation; 11.5. Multiplicative noise: genetic model; Chapter 12. Example in Finance: Black-Scholes Model; 12.1. Introduction: what is an option?; 12.2. Self-financing strategies; 12.2.1. Portfolio and its trading strategy; 12.2.2. Self-financing strategies; 12.2.3. Stock discount; 12.3. Option pricing problem: the Black-Scholes model; 12.4. Black-Scholes formula; 12.5. Risk-neutral probabilities: alternative derivation of Black-Scholes formula; 12.6. Exercises 
505 8 |a Chapter 13. Numerical Solution of Stochastic Differential Equations13.1. Memories of approximations of ordinary differential equations; 13.2. Euler approximation; 13.3. Higher-order strong approximations; 13.4. First-order weak approximations; 13.5. Higher-order weak approximations; 13.6. Example: Milstein-type approximations; 13.7. Example: Runge-Kutta approximations; 13.8. Exercises; Chapter 14. Elements of Multidimensional Stochastic Analysis; 14.1. Multidimensional Brownian motion; 14.2. Itô's formula for a multidimensional Brownian motion; 14.3. Stochastic differential equations 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Stochastic analysis. 
650 6 |a Analyse stochastique. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Stochastic analysis  |2 fast 
776 0 8 |i Print version:  |a Mackevicius, Vigirdas.  |t Introduction to stochastic analysis.  |d London : ISTE Ltd ; Hoboken, NJ : John Wiley, 2011  |z 9781848213111  |w (DLC) 2011012249  |w (OCoLC)711864615 
830 0 |a Applied stochastic methods series. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118603246/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24971868 
938 |a 123Library  |b 123L  |n 64308 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24971871 
938 |a ebrary  |b EBRY  |n ebr10660624 
938 |a EBSCOhost  |b EBSC  |n 536748 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24807259 
938 |a YBP Library Services  |b YANK  |n 10197097 
938 |a YBP Library Services  |b YANK  |n 10225646 
994 |a 92  |b IZTAP