Stochastic geometry for image analysis /
"This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London : Hoboken, NJ :
ISTE ; Wiley,
2012.
|
Colección: | Digital signal and image processing series.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Chapter 1. Introduction / X. Descombes
- Chapter 2. Marked Point Processes for Object Detection / X. Descombes
- 2.1. Principal definitions
- 2.2. Density of a point process
- 2.3. Marked point processes
- 2.4. Point processes and image analysis
- 2.4.1. Bayesian versus non-Bayesian
- 2.4.2. A priori versus reference measure
- Chapter 3. Random Sets for Texture Analysis / C. Lantǔjoul, M. Schmitt
- 3.1. Introduction
- 3.2. Random sets
- 3.2.1. Insufficiency of the spatial law
- 3.2.2. Introduction of a topological context
- 3.2.3. The theory of random closed sets (RACS)
- 3.2.4. Some examples
- 3.2.5. Stationarity and isotropy
- 3.3. Some geostatistical aspects
- 3.3.1. The ergodicity assumption
- 3.3.2. Inference of the DF of a stationary ergodic RACS
- 3.3.2.1. Construction of the estimator
- 3.3.2.2. On sampling
- 3.3.3. Individual analysis of objects
- 3.4. Some morphological aspects
- 3.4.1. Geometric interpretation
- 3.4.1.1. Point
- 3.4.1.2. Pair of points
- 3.4.1.3. Segment
- 3.4.1.4. Ball
- 3.4.2. Filtering
- 3.4.2.1. Opening and closing
- 3.4.2.2. Sequential alternate filtering
- 3.5. Appendix: demonstration of Miles' formulae for the Boolean model
- Chapter 4. Simulation and Optimization / F. Lafarge, X. Descombes, E. Zhizhina, R. Minlos
- 4.1. Discrete simulations: Markov chain Monte Carlo algorithms
- 4.1.1. Irreducibility, recurrence, and ergodicity
- 4.1.1.1. Definitions
- 4.1.1.2. Stationarity
- 4.1.1.3. Convergence
- 4.1.1.4. Irreducibility
- 4.1.1.5. Aperiodicity
- 4.1.1.6. Harris recurrence
- 4.1.1.7. Ergodicity
- 4.1.1.8. Geometric ergodicity
- 4.1.1.9. Central limit theorem
- 4.1.2. Metropolis-Hastings algorithm
- 4.1.3. Dimensional jumps
- 4.1.3.1. Mixture of kernels
- 4.1.3.2. & pi;-reversibility
- 4.1.4. Standard proposition kernels
- 4.1.4.1. Simple perturbations
- 4.1.4.2. Model switch
- 4.1.4.3. Birth and death
- 4.1.5. Specific proposition kernels
- 4.1.5.1. Creating complex transitions from standard transitions
- 4.1.5.2. Data-driven perturbations
- 4.1.5.3. Perturbations directed by the current state
- 4.1.5.4. Composition of kernels
- 4.2. Continuous simulations
- 4.2.1. Diffusion algorithm
- 4.2.2. Birth and death algorithm
- 4.2.3. Muliple births and deaths algorithm
- 4.2.3.1. Convergence of the distributions
- 4.2.3.2. Birth and death process
- 4.2.4. Discrete approximation
- 4.2.4.1. Acceleration of the multiple births and deaths algorithm
- 4.3. Mixed simulations
- 4.3.1. Jump process
- 4.3.2. Diffusion process
- 4.3.3. Coordination of jumps and diffusions
- 4.4. Simulated annealing
- 4.4.1. Cooling schedule
- 4.4.2. Initial temperature T₀
- 4.4.3. Logarithmic decrease
- 4.4.4. Geometric decrease
- 4.4.5. Adaptive reduction
- 4.4.6. Stopping criterion/final temperature
- Chapter 5. Parametric Inference for Marked Point Processes in Image Analysis / R. Stoica, F. Chatelain, M. Sigelle
- 5.1. Introduction
- 5.2. First question: what and where are the objects in the image?
- 5.3. Second question: what are the parameters of the point process that models the objects observed in the image?
- 5.3.1. Complete data
- 5.3.1.1. Maximum likelihood
- 5.3.1.2. Maximum pseudolikelihood
- 5.3.2. Incomplete data: EM algorithm
- 5.4. Conclusion and perspectives
- 5.5. Acknowledgments
- Chapter 6. How to Set Up a Point Process? / X. Descombes
- 6.1. From disks to polygons, via a discussion of segments
- 6.2. From no overlap to alignment
- 6.3. From the likelihood to a hypothesis test
- 6.4. From Metropolis-Hastings to multiple births and deaths
- Chapter 7. Population Counting / X. Descombes
- 7.1. Detection of Virchow-Robin spaces
- 7.1.1. Data modeling
- 7.1.2. Marked point process
- 7.1.3. Reversible jump MCMC algorithm
- 7.1.4. Results
- 7.2. Evaluation of forestry resources
- 7.2.1. 2D model
- 7.2.1.1. Prior
- 7.2.1.2. Data term
- 7.2.1.3. Optimization
- 7.2.1.4. Results
- 7.2.2. 3D model
- 7.2.2.1. Results
- 7.3. Counting a population of flamingos
- 7.3.1. Estimation of the flamingo color
- 7.3.2. Simulation and optimization by multiple births and deaths
- 7.3.3. Results
- 7.4. Counting the boats at a port
- 7.4.1. Initialization of the optimization algorithm
- 7.4.1.1. Parameter & gamma;<sub>d</sub>
- 7.4.1.2. Calibration of the do parameter
- 7.4.2. Initial results
- 7.4.3. Modification of the data energy
- 7.4.3.1. First modification of the prior energy
- 7.4.3.2. Second modification of the prior energy
- Chapter 8. Structure Extraction / F. Lafarge, X. Descombes
- 8.1. Detection of the road network
- 8.2. Extraction of building footprints
- 8.3. Representation of natural textures
- 8.3.1. Simple model
- 8.3.1.1. Data term
- 8.3.1.2. Sampling by jump diffusion
- 8.3.1.3. Results
- 8.3.2. Models with complex interactions
- Chapter 9. Shape Recognition / F. Lafarge, C. Mallet
- 9.1. Modeling of a LIDAR signal
- 9.1.1. Motivation
- 9.1.2. Model library
- 9.1.2.1. Energy formulation
- 9.1.3. Sampling
- 9.1.4. Results
- 9.1.4.1. Simulated data
- 9.1.4.2. Satellite data: large footprint waveforms
- 9.1.4.3. Airborne data: small footprint waveforms
- 9.1.4.4. Application to the classification of 3D point clouds
- 9.2. 3D reconstruction of buildings
- 9.2.1. Library of 3D models
- 9.2.2. Bayesian formulation
- 9.2.2.1. Likelihood
- 9.2.2.2. A priori
- 9.2.3. Optimization
- 9.2.4. Results and discussion
- Bibliography
- List of Authors
- Index.