Cargando…

Stochastic geometry for image analysis /

"This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Descombes, Xavier
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Hoboken, NJ : ISTE ; Wiley, 2012.
Colección:Digital signal and image processing series.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn826659611
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |||||||||||
008 130204s2012 enka ob 001 0 eng d
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d CDX  |d DG1  |d E7B  |d IDEBK  |d UMI  |d COO  |d DEBBG  |d OCLCA  |d OCLCQ  |d OCLCF  |d DEBSZ  |d OCLCQ  |d DG1  |d MOR  |d LIP  |d OCLCQ  |d CEF  |d OCLCQ  |d U3W  |d OCLCQ  |d UAB  |d NOC  |d UKAHL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 858949397  |a 960839849  |a 965425871  |a 988481672  |a 992824318 
020 |a 9781118601235  |q (electronic bk.) 
020 |a 1118601238  |q (electronic bk.) 
020 |a 9781118601327  |q (electronic bk.) 
020 |a 1118601327  |q (electronic bk.) 
020 |a 9781118601136 
020 |a 1118601130 
020 |z 9781848212404 
020 |z 1848212402 
029 1 |a AU@  |b 000050718453 
029 1 |a AU@  |b 000052007173 
029 1 |a CHBIS  |b 009914523 
029 1 |a CHNEW  |b 000941097 
029 1 |a CHVBK  |b 480213682 
029 1 |a DEBBG  |b BV041432443 
029 1 |a DEBBG  |b BV041905710 
029 1 |a DEBBG  |b BV043395357 
029 1 |a DEBSZ  |b 398283591 
029 1 |a DEBSZ  |b 485031213 
029 1 |a NZ1  |b 15916348 
035 |a (OCoLC)826659611  |z (OCoLC)858949397  |z (OCoLC)960839849  |z (OCoLC)965425871  |z (OCoLC)988481672  |z (OCoLC)992824318 
037 |a CL0500000292  |b Safari Books Online 
050 4 |a TA1637  |b .S76 2012eb 
072 7 |a TEC  |x 015000  |2 bisacsh 
082 0 4 |a 621.36/70151922  |2 23 
084 |a TEC015000  |2 bisacsh 
049 |a UAMI 
245 0 0 |a Stochastic geometry for image analysis /  |c edited by Xavier Descombes. 
260 |a London :  |b ISTE ;  |a Hoboken, NJ :  |b Wiley,  |c 2012. 
300 |a 1 online resource (x, 345 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Digital signal and image processing series 
520 |a "This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling"--  |c Provided by publisher 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter 1. Introduction / X. Descombes -- Chapter 2. Marked Point Processes for Object Detection / X. Descombes -- 2.1. Principal definitions -- 2.2. Density of a point process -- 2.3. Marked point processes -- 2.4. Point processes and image analysis -- 2.4.1. Bayesian versus non-Bayesian -- 2.4.2. A priori versus reference measure -- Chapter 3. Random Sets for Texture Analysis / C. Lantǔjoul, M. Schmitt -- 3.1. Introduction -- 3.2. Random sets -- 3.2.1. Insufficiency of the spatial law -- 3.2.2. Introduction of a topological context -- 3.2.3. The theory of random closed sets (RACS) -- 3.2.4. Some examples -- 3.2.5. Stationarity and isotropy -- 3.3. Some geostatistical aspects -- 3.3.1. The ergodicity assumption -- 3.3.2. Inference of the DF of a stationary ergodic RACS -- 3.3.2.1. Construction of the estimator -- 3.3.2.2. On sampling -- 3.3.3. Individual analysis of objects -- 3.4. Some morphological aspects -- 3.4.1. Geometric interpretation -- 3.4.1.1. Point -- 3.4.1.2. Pair of points -- 3.4.1.3. Segment -- 3.4.1.4. Ball -- 3.4.2. Filtering -- 3.4.2.1. Opening and closing -- 3.4.2.2. Sequential alternate filtering -- 3.5. Appendix: demonstration of Miles' formulae for the Boolean model -- Chapter 4. Simulation and Optimization / F. Lafarge, X. Descombes, E. Zhizhina, R. Minlos -- 4.1. Discrete simulations: Markov chain Monte Carlo algorithms -- 4.1.1. Irreducibility, recurrence, and ergodicity -- 4.1.1.1. Definitions -- 4.1.1.2. Stationarity -- 4.1.1.3. Convergence -- 4.1.1.4. Irreducibility -- 4.1.1.5. Aperiodicity -- 4.1.1.6. Harris recurrence -- 4.1.1.7. Ergodicity -- 4.1.1.8. Geometric ergodicity -- 4.1.1.9. Central limit theorem -- 4.1.2. Metropolis-Hastings algorithm -- 4.1.3. Dimensional jumps -- 4.1.3.1. Mixture of kernels -- 4.1.3.2. & pi;-reversibility -- 4.1.4. Standard proposition kernels -- 4.1.4.1. Simple perturbations -- 4.1.4.2. Model switch -- 4.1.4.3. Birth and death -- 4.1.5. Specific proposition kernels -- 4.1.5.1. Creating complex transitions from standard transitions -- 4.1.5.2. Data-driven perturbations -- 4.1.5.3. Perturbations directed by the current state -- 4.1.5.4. Composition of kernels -- 4.2. Continuous simulations -- 4.2.1. Diffusion algorithm -- 4.2.2. Birth and death algorithm -- 4.2.3. Muliple births and deaths algorithm -- 4.2.3.1. Convergence of the distributions -- 4.2.3.2. Birth and death process -- 4.2.4. Discrete approximation -- 4.2.4.1. Acceleration of the multiple births and deaths algorithm -- 4.3. Mixed simulations -- 4.3.1. Jump process -- 4.3.2. Diffusion process -- 4.3.3. Coordination of jumps and diffusions -- 4.4. Simulated annealing -- 4.4.1. Cooling schedule -- 4.4.2. Initial temperature T₀ -- 4.4.3. Logarithmic decrease -- 4.4.4. Geometric decrease -- 4.4.5. Adaptive reduction -- 4.4.6. Stopping criterion/final temperature -- Chapter 5. Parametric Inference for Marked Point Processes in Image Analysis / R. Stoica, F. Chatelain, M. Sigelle -- 5.1. Introduction -- 5.2. First question: what and where are the objects in the image? -- 5.3. Second question: what are the parameters of the point process that models the objects observed in the image? -- 5.3.1. Complete data -- 5.3.1.1. Maximum likelihood -- 5.3.1.2. Maximum pseudolikelihood -- 5.3.2. Incomplete data: EM algorithm -- 5.4. Conclusion and perspectives -- 5.5. Acknowledgments -- Chapter 6. How to Set Up a Point Process? / X. Descombes -- 6.1. From disks to polygons, via a discussion of segments -- 6.2. From no overlap to alignment -- 6.3. From the likelihood to a hypothesis test -- 6.4. From Metropolis-Hastings to multiple births and deaths -- Chapter 7. Population Counting / X. Descombes -- 7.1. Detection of Virchow-Robin spaces -- 7.1.1. Data modeling -- 7.1.2. Marked point process -- 7.1.3. Reversible jump MCMC algorithm -- 7.1.4. Results -- 7.2. Evaluation of forestry resources -- 7.2.1. 2D model -- 7.2.1.1. Prior -- 7.2.1.2. Data term -- 7.2.1.3. Optimization -- 7.2.1.4. Results -- 7.2.2. 3D model -- 7.2.2.1. Results -- 7.3. Counting a population of flamingos -- 7.3.1. Estimation of the flamingo color -- 7.3.2. Simulation and optimization by multiple births and deaths -- 7.3.3. Results -- 7.4. Counting the boats at a port -- 7.4.1. Initialization of the optimization algorithm -- 7.4.1.1. Parameter & gamma;<sub>d</sub> -- 7.4.1.2. Calibration of the do parameter -- 7.4.2. Initial results -- 7.4.3. Modification of the data energy -- 7.4.3.1. First modification of the prior energy -- 7.4.3.2. Second modification of the prior energy -- Chapter 8. Structure Extraction / F. Lafarge, X. Descombes -- 8.1. Detection of the road network -- 8.2. Extraction of building footprints -- 8.3. Representation of natural textures -- 8.3.1. Simple model -- 8.3.1.1. Data term -- 8.3.1.2. Sampling by jump diffusion -- 8.3.1.3. Results -- 8.3.2. Models with complex interactions -- Chapter 9. Shape Recognition / F. Lafarge, C. Mallet -- 9.1. Modeling of a LIDAR signal -- 9.1.1. Motivation -- 9.1.2. Model library -- 9.1.2.1. Energy formulation -- 9.1.3. Sampling -- 9.1.4. Results -- 9.1.4.1. Simulated data -- 9.1.4.2. Satellite data: large footprint waveforms -- 9.1.4.3. Airborne data: small footprint waveforms -- 9.1.4.4. Application to the classification of 3D point clouds -- 9.2. 3D reconstruction of buildings -- 9.2.1. Library of 3D models -- 9.2.2. Bayesian formulation -- 9.2.2.1. Likelihood -- 9.2.2.2. A priori -- 9.2.3. Optimization -- 9.2.4. Results and discussion -- Bibliography -- List of Authors -- Index. 
588 0 |a Print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Image processing  |x Statistical methods. 
650 0 |a Stochastic geometry. 
650 6 |a Traitement d'images  |x Méthodes statistiques. 
650 6 |a Géométrie stochastique. 
650 7 |a TECHNOLOGY & ENGINEERING  |x Imaging Systems.  |2 bisacsh 
650 7 |a Image processing  |x Statistical methods  |2 fast 
650 7 |a Stochastic geometry  |2 fast 
700 1 |a Descombes, Xavier. 
776 0 8 |i Print version: Stochastic geometry for image analysis.  |d London : ISTE ; Hoboken, NJ : Wiley, 2012  |z 9781848212404  |w (DLC) 2011036864  |w (OCoLC)751824143 
830 0 |a Digital signal and image processing series. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118601136/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26383782 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25004619 
938 |a Coutts Information Services  |b COUT  |n 24746418 
938 |a ebrary  |b EBRY  |n ebr10653858 
938 |a EBSCOhost  |b EBSC  |n 529233 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis24746418 
938 |a YBP Library Services  |b YANK  |n 9995392 
938 |a YBP Library Services  |b YANK  |n 9985012 
938 |a YBP Library Services  |b YANK  |n 12676474 
994 |a 92  |b IZTAP