Cargando…

MapReduce design patterns /

Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framew...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Miner, Donald
Otros Autores: Shook, Adam
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Beijing ; Sebastopol : O'Reilly, 2012.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn825076963
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 130124s2012 cc a o 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d DEBSZ  |d OCLCQ  |d XFF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d FEM  |d OCLCQ  |d CEF  |d UAB  |d RDF  |d UKAHL  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 968092087  |a 969060549 
020 |a 9781449341954 
020 |a 1449341950 
020 |a 9781449341985 
020 |a 1449341985 
020 |z 9781449327170 
020 |z 1449327176 
029 1 |a AU@  |b 000050492595 
029 1 |a DEBBG  |b BV041120919 
029 1 |a DEBSZ  |b 396758312 
029 1 |a AU@  |b 000067103579 
035 |a (OCoLC)825076963  |z (OCoLC)968092087  |z (OCoLC)969060549 
037 |a CL0500000182  |b Safari Books Online 
050 4 |a QA76.76.P37  |b M56 2013 
082 0 4 |a 005.74 
049 |a UAMI 
100 1 |a Miner, Donald. 
245 1 0 |a MapReduce design patterns /  |c Donald Miner, Adam Shook. 
260 |a Beijing ;  |a Sebastopol :  |b O'Reilly,  |c 2012. 
300 |a 1 online resource (xvi, 232 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Print version record. 
505 0 |a Design patterns and MapReduce -- Summarization patterns -- Filtering patterns -- Data organization patterns -- Join patterns -- Metapatterns -- Input and output patterns -- Final thoughts and the future of design patterns. 
520 |a Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you're using. Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop. Summarization patterns: get a top-level view by summarizing and grouping data Filtering patterns: view data subsets such as records generated from one user Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier Join patterns: analyze different datasets together to discover interesting relationships Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job Input and output patterns: customize the way you use Hadoop to load or store data "A clear exposition of MapReduce programs for common data processing patterns--this book is indespensible for anyone using Hadoop."--Tom White, author of Hadoop: The Definitive Guide. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a Apache Hadoop. 
630 0 0 |a MapReduce (Computer file) 
630 0 7 |a Apache Hadoop (Computer file)  |2 blmlsh 
630 0 7 |a MapReduce (Computer program)  |2 blmlsh 
630 0 7 |a Apache Hadoop  |2 fast 
630 0 7 |a MapReduce (Computer file)  |2 fast 
650 0 |a Electronic data processing  |x Distributed processing. 
650 0 |a Cluster analysis  |x Data processing. 
650 0 |a Software patterns. 
650 0 |a Computer algorithms. 
650 2 |a Algorithms 
650 6 |a Traitement réparti. 
650 6 |a Classification automatique (Statistique)  |x Informatique. 
650 6 |a Logiciels  |x Modèles de conception. 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 1 7 |a Apache Hadoop.  |2 bisacsh 
650 7 |a Cluster analysis  |x Data processing  |2 fast 
650 7 |a Computer algorithms  |2 fast 
650 7 |a Electronic data processing  |x Distributed processing  |2 fast 
650 7 |a Software patterns  |2 fast 
700 1 |a Shook, Adam. 
776 0 8 |i Print version:  |a Miner, Donald.  |t MapReduce design patterns.  |d Sebastopol, CA : Oreilly, 2013  |z 9781449327170  |w (OCoLC)792880175 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781449341954/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24672173 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24672172 
994 |a 92  |b IZTAP