|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
OR_ocn825076963 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr unu|||||||| |
008 |
130124s2012 cc a o 001 0 eng d |
040 |
|
|
|a UMI
|b eng
|e pn
|c UMI
|d COO
|d DEBSZ
|d OCLCQ
|d XFF
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCF
|d OCLCO
|d OCLCQ
|d OCLCO
|d FEM
|d OCLCQ
|d CEF
|d UAB
|d RDF
|d UKAHL
|d OCLCO
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 968092087
|a 969060549
|
020 |
|
|
|a 9781449341954
|
020 |
|
|
|a 1449341950
|
020 |
|
|
|a 9781449341985
|
020 |
|
|
|a 1449341985
|
020 |
|
|
|z 9781449327170
|
020 |
|
|
|z 1449327176
|
029 |
1 |
|
|a AU@
|b 000050492595
|
029 |
1 |
|
|a DEBBG
|b BV041120919
|
029 |
1 |
|
|a DEBSZ
|b 396758312
|
029 |
1 |
|
|a AU@
|b 000067103579
|
035 |
|
|
|a (OCoLC)825076963
|z (OCoLC)968092087
|z (OCoLC)969060549
|
037 |
|
|
|a CL0500000182
|b Safari Books Online
|
050 |
|
4 |
|a QA76.76.P37
|b M56 2013
|
082 |
0 |
4 |
|a 005.74
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Miner, Donald.
|
245 |
1 |
0 |
|a MapReduce design patterns /
|c Donald Miner, Adam Shook.
|
260 |
|
|
|a Beijing ;
|a Sebastopol :
|b O'Reilly,
|c 2012.
|
300 |
|
|
|a 1 online resource (xvi, 232 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|2 rda
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Design patterns and MapReduce -- Summarization patterns -- Filtering patterns -- Data organization patterns -- Join patterns -- Metapatterns -- Input and output patterns -- Final thoughts and the future of design patterns.
|
520 |
|
|
|a Until now, design patterns for the MapReduce framework have been scattered among various research papers, blogs, and books. This handy guide brings together a unique collection of valuable MapReduce patterns that will save you time and effort regardless of the domain, language, or development framework you're using. Each pattern is explained in context, with pitfalls and caveats clearly identified to help you avoid common design mistakes when modeling your big data architecture. This book also provides a complete overview of MapReduce that explains its origins and implementations, and why design patterns are so important. All code examples are written for Hadoop. Summarization patterns: get a top-level view by summarizing and grouping data Filtering patterns: view data subsets such as records generated from one user Data organization patterns: reorganize data to work with other systems, or to make MapReduce analysis easier Join patterns: analyze different datasets together to discover interesting relationships Metapatterns: piece together several patterns to solve multi-stage problems, or to perform several analytics in the same job Input and output patterns: customize the way you use Hadoop to load or store data "A clear exposition of MapReduce programs for common data processing patterns--this book is indespensible for anyone using Hadoop."--Tom White, author of Hadoop: The Definitive Guide.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
630 |
0 |
0 |
|a Apache Hadoop.
|
630 |
0 |
0 |
|a MapReduce (Computer file)
|
630 |
0 |
7 |
|a Apache Hadoop (Computer file)
|2 blmlsh
|
630 |
0 |
7 |
|a MapReduce (Computer program)
|2 blmlsh
|
630 |
0 |
7 |
|a Apache Hadoop
|2 fast
|
630 |
0 |
7 |
|a MapReduce (Computer file)
|2 fast
|
650 |
|
0 |
|a Electronic data processing
|x Distributed processing.
|
650 |
|
0 |
|a Cluster analysis
|x Data processing.
|
650 |
|
0 |
|a Software patterns.
|
650 |
|
0 |
|a Computer algorithms.
|
650 |
|
2 |
|a Algorithms
|
650 |
|
6 |
|a Traitement réparti.
|
650 |
|
6 |
|a Classification automatique (Statistique)
|x Informatique.
|
650 |
|
6 |
|a Logiciels
|x Modèles de conception.
|
650 |
|
6 |
|a Algorithmes.
|
650 |
|
7 |
|a algorithms.
|2 aat
|
650 |
1 |
7 |
|a Apache Hadoop.
|2 bisacsh
|
650 |
|
7 |
|a Cluster analysis
|x Data processing
|2 fast
|
650 |
|
7 |
|a Computer algorithms
|2 fast
|
650 |
|
7 |
|a Electronic data processing
|x Distributed processing
|2 fast
|
650 |
|
7 |
|a Software patterns
|2 fast
|
700 |
1 |
|
|a Shook, Adam.
|
776 |
0 |
8 |
|i Print version:
|a Miner, Donald.
|t MapReduce design patterns.
|d Sebastopol, CA : Oreilly, 2013
|z 9781449327170
|w (OCoLC)792880175
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781449341954/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24672173
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24672172
|
994 |
|
|
|a 92
|b IZTAP
|