Cargando…

Bandit Algorithms for Website Optimization /

When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how thi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: White, John Myles
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, Calif. : O'Reilly, 2013.
Colección:Developing, deploying, and debugging
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn825076917
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cnu---unuuu
008 130124s2013 caua o 000 0 eng d
010 |a  2013454619 
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d N$T  |d YDXCP  |d DEBSZ  |d UPM  |d TEFOD  |d IDEBK  |d OCLCF  |d TEFOD  |d OCLCQ  |d TEFOD  |d OCLCQ  |d FEM  |d OCLCQ  |d CEF  |d UAB  |d E7B  |d EBLCP  |d WYU  |d UKAHL  |d VT2  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCQ 
019 |a 861531662  |a 968096410  |a 968985762  |a 1066407643  |a 1103276868  |a 1152982905  |a 1192351935  |a 1240516490 
020 |a 9781449341596  |q (electronic bk.) 
020 |a 1449341594  |q (electronic bk.) 
020 |a 9781449341589  |q (electronic bk.) 
020 |a 1449341586  |q (electronic bk.) 
020 |z 1449341330 
020 |z 9781449341336 
029 1 |a AU@  |b 000050492152 
029 1 |a DEBBG  |b BV041120824 
029 1 |a DEBSZ  |b 396757324 
029 1 |a AU@  |b 000073553342 
035 |a (OCoLC)825076917  |z (OCoLC)861531662  |z (OCoLC)968096410  |z (OCoLC)968985762  |z (OCoLC)1066407643  |z (OCoLC)1103276868  |z (OCoLC)1152982905  |z (OCoLC)1192351935  |z (OCoLC)1240516490 
037 |a 10318599-4891-4B1E-8244-0E48FBDF7C4A  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA76.9.D35  |b W48 2013 
072 7 |a COM  |x 018000  |2 bisacsh 
082 0 4 |a 005.73  |2 23 
049 |a UAMI 
100 1 |a White, John Myles. 
245 1 0 |a Bandit Algorithms for Website Optimization /  |c John Myles White. 
260 |a Sebastopol, Calif. :  |b O'Reilly,  |c 2013. 
300 |a 1 online resource (1 volume) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
490 0 |a Developing, deploying, and debugging 
588 0 |a Online resource; title from PDF title page (Safari, viewed Jan. 17, 2013). 
588 0 |a Print version record. 
505 0 |a Machine generated contents note: 1. Two Characters: Exploration and Exploitation -- The Scientist and the Businessman -- Cynthia the Scientist -- Bob the Businessman -- Oscar the Operations Researcher -- The Explore-Exploit Dilemma -- 2. Why Use Multiarmed Bandit Algorithms? -- What Are We Trying to Do? -- The Business Scientist: Web-Scale A/B Testing -- 3. The epsilon-Greedy Algorithm -- Introducing the epsilon-Greedy Algorithm -- Describing Our Logo-Choosing Problem Abstractly -- What's an Arm? -- What's a Reward? -- What's a Bandit Problem? -- Implementing the epsilon-Greedy Algorithm -- Thinking Critically about the epsilon-Greedy Algorithm -- 4. Debugging Bandit Algorithms -- Monte Carlo Simulations Are Like Unit Tests for Bandit Algorithms -- Simulating the Arms of a Bandit Problem -- Analyzing Results from a Monte Carlo Study -- Approach 1 Track the Probability of Choosing the Best Arm -- Approach 2 Track the Average Reward at Each Point in Time -- Approach 3 Track the Cumulative Reward at Each Point in Time -- Exercises -- 5. The Softmax Algorithm -- Introducing the Softmax Algorithm -- Implementing the Softmax Algorithm -- Measuring the Performance of the Softmax Algorithm -- The Annealing Softmax Algorithm -- Exercises -- 6. UCB -- The Upper Confidence Bound Algorithm -- Introducing the UCB Algorithm -- Implementing UCB -- Comparing Bandit Algorithms Side-by-Side -- Exercises -- 7. Bandits in the Real World: Complexity and Complications -- A/A Testing -- Running Concurrent Experiments -- Continuous Experimentation vs. Periodic Testing -- Bad Metrics of Success -- Scaling Problems with Good Metrics of Success -- Intelligent Initialization of Values -- Running Better Simulations -- Moving Worlds -- Correlated Bandits -- Contextual Bandits -- Implementing Bandit Algorithms at Scale -- 8. Conclusion -- Learning Life Lessons from Bandit Algorithms -- A Taxonomy of Bandit Algorithms. 
520 |a When looking for ways to improve your website, how do you decide which changes to make? And which changes to keep? This concise book shows you how to use Multiarmed Bandit algorithms to measure the real-world value of any modifications you make to your site. Author John Myles White shows you how this powerful class of algorithms can help you boost website traffic, convert visitors to customers, and increase many other measures of success. This is the first developer-focused book on bandit algorithms, which were previously described only in research papers. You'll quickly learn the benefits of several simple algorithms--including the epsilon-Greedy, Softmax, and Upper Confidence Bound (UCB) algorithms--by working through code examples written in Python, which you can easily adapt for deployment on your own website. Learn the basics of A/B testing--and recognize when it's better to use bandit algorithms Develop a unit testing framework for debugging bandit algorithms Get additional code examples written in Julia, Ruby, and JavaScript with supplemental online materials. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data structures (Computer science) 
650 0 |a Algorithms. 
650 0 |a Computer algorithms. 
650 6 |a Structures de données (Informatique) 
650 6 |a Algorithmes. 
650 7 |a algorithms.  |2 aat 
650 7 |a COMPUTERS  |x Data Processing.  |2 bisacsh 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010 
650 7 |a Algorithms.  |2 fast  |0 (OCoLC)fst00805020 
650 7 |a Data structures (Computer science)  |2 fast  |0 (OCoLC)fst00887978 
776 0 8 |i Print version:  |a White, John Myles.  |t Bandit algorithms for website optimization.  |d Sebastopol, California : O'Reilly, 2013  |h x, 73 pages  |z 9781449341336 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781449341565/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26847752 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26847753 
938 |a EBSCOhost  |b EBSC  |n 521049 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28409240 
938 |a YBP Library Services  |b YANK  |n 9980963 
938 |a ebrary  |b EBRY  |n ebr10758893 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1099516 
994 |a 92  |b IZTAP