|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
OR_ocn825076916 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
130124s2012 cc a o 000 0 eng d |
040 |
|
|
|a UMI
|b eng
|e pn
|c UMI
|d COO
|d XFF
|d DEBSZ
|d OCLCQ
|d OCLCF
|d REB
|d OCLCQ
|d FEM
|d OCLCQ
|d CEF
|d UAB
|d UKAHL
|d OCLCO
|d OCLCQ
|
019 |
|
|
|a 968037928
|a 969070727
|
020 |
|
|
|a 9781449361600
|
020 |
|
|
|a 1449361609
|
020 |
|
|
|a 9781449361624
|
020 |
|
|
|a 1449361625
|
020 |
|
|
|z 9781449305468
|
020 |
|
|
|z 1449305466
|
029 |
1 |
|
|a AU@
|b 000050492158
|
029 |
1 |
|
|a DEBBG
|b BV041120822
|
029 |
1 |
|
|a DEBSZ
|b 396757308
|
029 |
1 |
|
|a AU@
|b 000067097267
|
035 |
|
|
|a (OCoLC)825076916
|z (OCoLC)968037928
|z (OCoLC)969070727
|
037 |
|
|
|a CL0500000182
|b Safari Books Online
|
050 |
|
4 |
|a QA76.73.P98
|b B74 2012eb
|
082 |
0 |
4 |
|a 005.133
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bressert, Eli.
|
245 |
1 |
0 |
|a SciPy and NumPy /
|c Eli Bressert.
|
260 |
|
|
|a Beijing ;
|a Sebastopol :
|b O'Reilly,
|c ©2012.
|
300 |
|
|
|a 1 online resource (57 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|2 rda
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Are you new to SciPy and NumPy? Do you want to learn it quickly and easily through examples and a concise introduction? Then this is the book for you. You'll cut through the complexity of online documentation and discover how easily you can get up to speed with these Python libraries. Ideal for data analysts and scientists in any field, this overview shows you how to use NumPy for numerical processing, including array indexing, math operations, and loading and saving data. You'll learn how SciPy helps you work with advanced mathematical functions such as optimization, interpolation, integration, clustering, statistics, and other tools that take scientific programming to a whole new level. The new edition is now available, fully revised and updated in June 2013. Learn the capabilities of NumPy arrays, element-by-element operations, and core mathematical operations Solve minimization problems quickly with SciPy's optimization package Use SciPy functions for interpolation, from simple univariate to complex multivariate cases Apply a variety of SciPy statistical tools such as distributions and functions Learn SciPy's spatial and cluster analysis classes Save operation time and memory usage with sparse matrices.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Python (Computer program language)
|
650 |
|
0 |
|a Numerical analysis.
|
650 |
|
6 |
|a Python (Langage de programmation)
|
650 |
|
6 |
|a Analyse numérique.
|
650 |
1 |
7 |
|a Python (Computer program language)
|2 bisacsh
|
650 |
|
7 |
|a Numerical analysis.
|2 fast
|0 (OCoLC)fst01041273
|
650 |
|
7 |
|a Python (Computer program language)
|2 fast
|0 (OCoLC)fst01084736
|
776 |
0 |
8 |
|i Print version:
|a Bressert, Eli.
|t SciPy and NumPy.
|d Beijing ; Sebastopol : O'Reilly, ©2012
|z 9781449305468
|w (OCoLC)780479791
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781449361600/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24672192
|
994 |
|
|
|a 92
|b IZTAP
|