Cargando…

Geometric algebra for computer science : an object-oriented approach to geometry /

Within the last decade, Geometric Algebra (GA) has emerged as a powerful alternative to classical matrix algebra as a comprehensive conceptual language and computational system for computer science. This book will serve as a standard introduction and reference to the subject for students and experts...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dorst, Leo, 1958-
Otros Autores: Fontijne, Daniel, Mann, Stephen, 1963-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Francisco, CA : Morgan Kaufmann, [2007]
Colección:Morgan Kaufmann series in computer graphics.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn822335969
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 121220s2007 caua ob 001 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d DEBSZ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCF  |d OCLCO  |d GBVCP  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d CEF  |d MOR  |d WYU  |d OCLCA  |d VLY  |d OCLCO  |d OCLCQ 
019 |a 988445551 
020 |a 9780080553108 
020 |a 0080553109 
020 |a 0123694655 
020 |a 9780123694652 
020 |z 9780123694652 
029 1 |a DEBBG  |b BV040903282 
029 1 |a DEBSZ  |b 381393437 
029 1 |a GBVCP  |b 785364730 
029 1 |a AU@  |b 000069033008 
035 |a (OCoLC)822335969  |z (OCoLC)988445551 
037 |a CL0500000177  |b Safari Books Online 
050 4 |a QA199  |b .D678 2007 
082 0 4 |a 006.60151257 
049 |a UAMI 
100 1 |a Dorst, Leo,  |d 1958- 
245 1 0 |a Geometric algebra for computer science :  |b an object-oriented approach to geometry /  |c Leo Dorst, Daniel Fotijne, Stephen Mann. 
260 |a San Francisco, CA :  |b Morgan Kaufmann,  |c [2007] 
300 |a 1 online resource (1 volume) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a The Morgan Kaufmann series in computer graphics 
588 0 |a Online resource; title from PDF title page (Safari, viewed Nov. 16, 2012). 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Geometric Algebra for Computer Science: An Object-oriented Approach to Geometry; Copyright Page; Contents; LIST OF FIGURES; LIST OF TABLES; LIST OF PROGRAMMING EXAMPLES; PREFACE; CHAPTER 1. WHY GEOMETRIC ALGEBRA?; 1.1 An Example in Geometric Algebra; 1.2 How It Works and How It's Different; 1.3 Programming Geometry; 1.4 The Structure of This Book; 1.5 The Structure of the Chapters; PART I: GEOMETRIC ALGEBRA; CHAPTER 2. SPANNING ORIENTED SUBSPACES; 2.1 Vector Spaces; 2.2 Oriented Line Elements; 2.3 Oriented Area Elements; 2.4 Oriented Volume Elements 
505 8 |a 2.5 Quadvectors in 3-D Are Zero2.6 Scalars Interpreted Geometrically; 2.7 Applications; 2.8 Homogeneous Subspace Representation; 2.9 The Graded Algebra of Subspaces; 2.10 Summary of Outer Product Properties; 2.11 Further Reading; 2.12 Exercises; 2.13 Programming Examples and Exercises; CHAPTER 3. METRIC PRODUCTS OF SUBSPACES; 3.1 Sizing Up Subspaces; 3.2 From Scalar Product to Contraction; 3.3 Geometric Interpretation of the Contraction; 3.4 The Other Contraction; 3.5 Orthogonality and Duality; 3.6 Orthogonal Projection of Subspaces; 3.7 The 3-D Cross Product 
505 8 |a 3.8 Application: Reciprocal Frames3.9 Further Reading; 3.10 Exercises; 3.11 Programming Examples and Exercises; CHAPTER 4. LINEAR TRANSFORMATIONS OF SUBSPACES; 4.1 Linear Transformations of Vectors; 4.2 Outermorphisms: Linear Transformations of Blades; 4.3 Linear Transformation of the Metric Products; 4.4 Inverses of Outermorphisms; 4.5 Matrix Representations; 4.6 Summary; 4.7 Suggestions for Further Reading; 4.8 Structural Exercises; 4.9 Programming Examples and Exercises; CHAPTER 5. INTERSECTION AND UNION OF SUBSPACES; 5.1 The Phenomenology of Intersection 
505 8 |a 5.2 Intersection through Outer Factorization5.3 Relationships Between Meet and Join; 5.4 Using Meet and Join; 5.5 Join and Meet are Mostly Linear; 5.6 Quantitative Properties of the Meet; 5.7 Linear Transformation of Meet and Join; 5.8 Offset Subspaces; 5.9 Further Reading; 5.10 Exercises; 5.11 Programming Examples and Exercises; CHAPTER 6. THE FUNDAMENTAL PRODUCT OF GEOMETRIC ALGEBRA; 6.1 The Geometric Product for Vectors; 6.2 The Geometric Product of Multivectors; 6.3 The Subspace Products Retrieved; 6.4 Geometric Division; 6.5 Further Reading; 6.6 Exercises 
505 8 |a 6.7 Programming Examples and ExercisesCHAPTER 7. ORTHOGONAL TRANSFORMATIONS AS VERSORS; 7.1 Reflections of Subspaces; 7.2 Rotations of Subspaces; 7.3 Composition of Rotations; 7.4 The Exponential Representation of Rotors; 7.5 Subspaces as Operators; 7.6 Versors Generate Orthogonal Transformations; 7.7 The Product Structure of Geometric Algebra; 7.8 Further Reading; 7.9 Exercises; 7.10 Programming Examples and Exercises; CHAPTER 8. GEOMETRIC DIFFERENTIATION; 8.1 Geometrical Changes by Orthogonal Transformations; 8.2 Transformational Changes; 8.3 Parametric Differentiation 
520 |a Within the last decade, Geometric Algebra (GA) has emerged as a powerful alternative to classical matrix algebra as a comprehensive conceptual language and computational system for computer science. This book will serve as a standard introduction and reference to the subject for students and experts alike. As a textbook, it provides a thorough grounding in the fundamentals of GA, with many illustrations, exercises and applications. Experts will delight in the refreshing perspective GA gives to every topic, large and small.-David Hestenes, Distinguished research Professor, Department of Phy. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Clifford algebras. 
650 0 |a Computer graphics  |x Mathematics. 
650 0 |a Object-oriented methods (Computer science) 
650 6 |a Algèbres de Clifford. 
650 6 |a Infographie  |x Mathématiques. 
650 6 |a Conception orientée objet (Informatique) 
650 7 |a Clifford algebras.  |2 fast  |0 (OCoLC)fst00864221 
650 7 |a Computer graphics  |x Mathematics.  |2 fast  |0 (OCoLC)fst00872135 
650 7 |a Object-oriented methods (Computer science)  |2 fast  |0 (OCoLC)fst01042803 
700 1 |a Fontijne, Daniel. 
700 1 |a Mann, Stephen,  |d 1963- 
830 0 |a Morgan Kaufmann series in computer graphics. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780123694652/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP