Fundamentals of renewable energy processes /
With energy sustainability and security at the forefront of public discourse worldwide, there is a pressing need to foster an understanding of clean, safe alternative energy sources such as solar and wind power. Aldo da Rosa's highly respected and comprehensive resource fulfills this need; it h...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford :
Academic,
2012.
|
Edición: | 3rd ed. |
Colección: | Engineering professional collection
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Front Cover
- Fundamentals of Renewable Energy Processes
- Copyright Page
- Table of Content
- Foreword to the Third Edition
- Foreword to the Second Edition
- Foreword to the First Edition
- Acknowledgements
- Generalites
- 1.1 Units and Constants
- 1.2 Energy and Utility
- 1.3 Conservation of Energy
- 1.4 Planetary Energy Balance
- 1.5 The Energy Utilization Rate
- 1.6 The Population Explosion
- 1.7 The Market Penetration Function
- 1.8 Planetary Energy Resources
- 1.8.1 Mineral Assets
- 1.9 Energy Utilization
- 1.10 The Efficiency Question
- 1.11 The Ecology Question
- 1.11.1 Biological
- 1.11.2 Mineral
- 1.11.3 Subterranean
- 1.11.4 Oceanic
- 1.12 Financing
- 1.13 The Cost of Electricity
- References
- Part I
- Heat Engines
- A Minimum of Thermodynamics and of the Kinetic Theory of Gases
- 2.1 The Motion of Molecules
- 2.1.1 Temperature
- 2.1.2 The Perfect-Gas Law
- 2.1.3 Internal Energy
- 2.1.4 Specific Heat at Constant Volume
- 2.1.5 The First Law of Thermodynamics
- 2.1.6 The Pressure-Volume Work
- 2.1.7 Specific Heat at Constant Pressure
- 2.1.8 Degrees of Freedom
- 2.2 Manipulating Confined Gases (Closed Systems)
- 2.2.1 Adiabatic Processes
- 2.2.1.1 Abrupt Compression
- 2.2.1.2 Gradual Compression
- 2.2.1.3 p-V Diagrams
- 2.2.1.4 Polytropic Law
- 2.2.1.5 Work Done Under Adiabatic Expansion (Close System)
- 2.2.2 Isothermal Processes
- 2.2.2.1 Functions of State
- 2.3 Manipulating Flowing Gases (Open Systems)
- 2.3.1 Enthalpy
- 2.3.2 Turbines
- 2.3.2.1 Isentropic Processes
- 2.4 Entropy and Lossy Systems
- 2.4.1 Changes in Entropy
- 2.4.2 Reversibility
- 2.4.3 Causes of Irreversibility
- 2.4.3.1 Friction
- 2.4.3.2 Heat Transfer Across Temperature Differences (Heat Transfer by Conduction)
- 2.4.3.3 Unrestrained Compression, Expansion of a Gas
- 2.4.4 Negentropy.
- 2.5 Distribution Functions
- 2.5.1 How to Plot Statistics
- 2.5.2 Maxwellian Distribution
- 2.5.3 Fermi-Dirac Distribution
- 2.6 Boltzmann's Law
- 2.7 Phases of a Pure Substance
- 2.8 Symbology
- References
- Mechanical Heat Engines
- 3.1 Heats of Combustion
- 3.2 Carnot Efficiency
- 3.3 Engine Types
- 3.4 The Otto Engine
- 3.4.1 The Efficiency of an Otto Engine
- 3.4.2 Using the T-s Diagram
- 3.4.3 Improving the Efficiency of the Otto Engine
- 3.5 Gasoline
- 3.5.1 Heat of Combustion
- 3.5.2 Antiknock Characteristics
- 3.6 Knocking
- 3.7 Rankine Cycle
- 3.7.1 The Boiling of Water
- 3.7.2 The Steam Engine
- 3.7.3 And now?
- 3.8 The Brayton Cycle
- 3.9 Combined Cycles
- 3.10 Hybrid Engines for Automobiles
- 3.11 The Stirling Engine
- 3.11.1 The Kinematic Stirling Engine
- 3.11.1.1 The Alpha Stirling Engine
- 3.11.1.2 The Beta Stirling Engine
- 3.11.1.3 The Implementation of the Kinematic Stirling
- 3.11.2 The Free-piston Stirling Engine
- References
- Ocean Thermal Energy Converters
- 4.1 Introduction
- 4.2 OTEC Configurations
- 4.3 OTEC Efficiency
- 4.4 OTEC Design
- 4.5 Heat Exchangers
- 4.6 Siting
- References
- Thermoelectricity
- 5.1 Experimental Observations
- 5.2 Thermoelectric Thermometers
- 5.3 The Thermoelectric Generator
- 5.4 Figure of Merit of a Material
- 5.5 The Wiedemann-Franz-Lorenz Law
- 5.6 Thermal Conductivity in Solids
- 5.7 Seebeck Coefficient of Semiconductors
- 5.8 Performance of Thermoelectric Materials
- 5.9 Some Applications of Thermoelectric Generators
- 5.10 Design of a Thermoelectric Generator
- 5.11 Thermoelectric Refrigerators and Heat Pumps
- 5.11.1 Design Using an Existing Thermocouple
- 5.11.2 Design Based on Given Semiconductors
- 5.12 Temperature Dependence
- 5.13 Battery Architecture
- 5.14 The Physics of Thermoelectricity
- 5.14.1 The Seebeck Effect.
- 5.14.2 The Peltier Effect
- 5.14.3 The Thomson Effect
- 5.14.4 Kelvin's Relations
- 5.15 Directions and Signs
- 5.16 Appendix
- References
- Thermionics
- 6.1 Introduction
- 6.2 Thermionic Emission
- 6.3 Electron Transport
- 6.3.1 The Child-Langmuir Law
- 6.4 Lossless Diodes with Space Charge Neutralization
- 6.4.1 Interelectrode Potentials
- 6.4.2 V-J Characteristics
- 6.4.3 The Open-Circuit Voltage
- 6.4.4 Maximum Power Output
- 6.5 Losses in Vacuum Diodes with No Space Charge
- 6.5.1 Efficiency
- 6.5.2 Radiation Losses
- 6.5.2.1 Radiation of Heat
- 6.5.2.2 Efficiency with Radiation Losses Only
- 6.5.3 Excess Electron Energy
- 6.5.4 Heat Conduction
- 6.5.5 Lead Resistance
- 6.6 Real Vacuum-Diodes
- 6.7 Vapor Diodes
- 6.7.1 Cesium Adsorption
- 6.7.2 Contact Ionization
- 6.7.3 Thermionic Ion Emission
- 6.7.4 Space Charge Neutralization Conditions
- 6.7.5 More V-J Characteristics
- 6.8 High-Pressure Diodes
- References
- AMTECMuch of this chapter is based on the article by Cole (1983)
- 7.1 Operating Principle
- 7.2 Vapor Pressure
- 7.3 Pressure Drop in the Sodium Vapor Column
- 7.4 Mean Free Path of Sodium Ions
- 7.5 Characteristics of an AMTEC
- 7.6 Efficiency
- 7.7 Thermodynamics of an AMTEC
- References
- Radio-Noise Generators
- 8.1 Sole Section
- References
- Part II
- The World of Hydrogen
- Fuel Cells
- 9.1 Introduction
- 9.2 Voltaic Cells
- 9.3 Fuel Cell Classification
- 9.3.1 Temperature of Operation
- 9.3.2 State of the Electrolyte
- 9.3.3 Type of Fuel
- 9.3.4 Chemical Nature of the Electrolyte
- 9.4 Fuel Cell Reactions
- 9.4.1 Alkaline Electrolytes
- 9.4.2 Acid Electrolytes
- 9.4.3 Molten Carbonate Electrolytes
- 9.4.4 Ceramic Electrolytes
- 9.4.5 Methanol Fuel Cells
- 9.4.6 Formic Acid Fuel Cells
- 9.5 Typical Fuel Cell Configurations
- 9.5.1 Demonstration Fuel Cell (KOH).
- 9.5.2 Phosphoric Acid Fuel Cells (PAFC)
- 9.5.2.1 A Fuel Cell Battery (Engelhard)
- 9.5.2.2 First-Generation Fuel Cell Power Plant
- 9.5.3 Molten Carbonate Fuel Cells (MCFC)
- 9.5.3.1 Second-Generation Fuel Cell Power Plant
- 9.5.4 Ceramic Fuel Cells (SOFC)
- 9.5.4.1 Third-Generation Fuel Cell Power Plant
- 9.5.4.2 High Temperature Ceramic Fuel Cells
- 9.5.4.3 Low Temperature Ceramic Fuel Cells
- 9.5.5 Solid-Polymer Electrolyte Fuel Cells
- 9.5.5.1 Cell Construction
- 9.5.6 Direct Methanol Fuel Cells
- 9.5.7 Direct Formic Acid Fuel Cells (DFAFC)
- 9.5.8 Solid Acid Fuel Cells (SAFC)
- 9.5.9 Metallic Fuel Cells-Zinc-Air Fuel Cells
- 9.6 Fuel Cell Applications
- 9.6.1 Stationary Power Plants
- 9.6.2 Automotive Power Plants
- 9.6.3 Other Applications
- 9.7 The Thermodynamics of Fuel Cells
- 9.7.1 Heat of Combustion
- 9.7.2 Free Energy
- 9.7.3 Efficiency of Reversible Fuel Cells
- 9.7.4 Effects of Pressure and Temperature on the Enthalpy[-12pt] and Free Energy Changes of a Reaction
- 9.7.4.1 Enthalpy Dependence on Temperature
- 9.7.4.2 Enthalpy Dependence on Pressure
- 9.7.4.3 Free Energy Dependence on Temperature
- 9.7.4.4 Free Energy Dependence on Pressure
- 9.7.4.5 The Nernst Equation
- 9.7.4.6 Voltage Dependence on Temperature
- 9.8 Performance of Real Fuel Cells
- 9.8.1 Current Delivered by a Fuel Cell
- 9.8.2 Efficiency of Practical Fuel Cells
- 9.8.3 V-I Characteristics of Fuel Cells
- 9.8.3.1 Empirically Derived Characteristics
- 9.8.3.2 Scaling Fuel Cells
- 9.8.3.3 More Complete Empirical Characteristics of Fuel Cells
- 9.8.4 Open-circuit Voltage
- 9.8.5 Reaction Kinetics
- 9.8.5.1 Reaction Rates
- 9.8.5.2 Activation Energy
- 9.8.5.3 Catalysis
- 9.8.6 The Butler-Volmer Equation
- 9.8.6.1 Exchange Currents
- 9.8.7 Transport Losses
- 9.8.8 Heat Dissipation by Fuel Cells.
- 9.8.8.1 Heat Removal from Fuel Cells
- References
- Hydrogen Production
- 10.1 Generalities
- 10.2 Chemical Production of Hydrogen
- 10.2.1 Historical
- 10.2.2 Metal-Water Hydrogen Production
- 10.2.3 Large-scale Hydrogen Production
- 10.2.3.1 Partial Oxidation
- 10.2.3.2 Steam Reforming
- 10.2.3.3 Thermal Decomposition
- 10.2.3.4 Syngas
- 10.2.3.5 Shift Reaction
- 10.2.3.6 Methanation
- 10.2.3.7 Methanol
- 10.2.3.8 Syn-crude
- 10.2.4 Hydrogen Purification
- 10.2.4.1 Desulfurization
- 10.2.4.2 CO2 Removal
- 10.2.4.3 CO Removal and Hydrogen Extraction
- 10.2.4.4 Hydrogen Production Plants
- 10.2.5 Compact Fuel Processors
- 10.2.5.1 Formic Acid
- 10.3 Electrolytic Hydrogen
- 10.3.1 Introduction
- 10.3.2 Electrolyzer Configurations
- 10.3.2.1 Liquid Electrolyte Electrolyzers
- 10.3.2.2 Solid-Polymer Electrolyte Electrolyzers
- 10.3.2.3 Ceramic Electrolyte Electrolyzers
- 10.3.2.4 High Efficiency Steam Electrolyzers
- 10.3.3 Efficiency of Electrolyzers
- 10.3.4 Concentration-Differential Electrolyzers
- 10.3.5 Electrolytic Hydrogen Compression
- 10.4 Thermolytic Hydrogen
- 10.4.1 Direct Dissociation of Water
- 10.4.2 Chemical Dissociation of Water
- 10.4.2.1 Mercury-hydrobromic acid cycle
- 10.4.2.2 Barium chromate cycle
- 10.4.2.3 Sulfur-iodine cycle
- 10.5 Photolytic Hydrogen
- 10.5.1 Generalities
- 10.5.2 Solar Photolysis
- 10.6 Photobiologic Hydrogen Production
- References
- Hydrogen Storage
- 11.1 Introduction
- 11.1.1 DOE Targets for Automotive Hydrogen Storage
- 11.2 Compressed Gas
- 11.3 Cryogenic Hydrogen
- 11.4 Storage of Hydrogen by Adsorption
- 11.5 Storage of Hydrogen in Chemical Compounds
- 11.5.1 Generalities
- 11.5.2 Hydrogen Carriers
- 11.5.3 Water Plus a Reducing Substance
- 11.5.4 Formic Acid
- 11.5.5 Metal Hydrides
- 11.5.5.1 Characteristics of Hydride Materials.