Financial risk modelling and portfolio optimization with R /
Introduces the latest techniques advocated for measuring financial market risk and portfolio optimisation, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. Financial Risk Modelling and Portfolio Optimisation with R: Demonstrates...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex, UK :
John Wiley & Sons,
2013.
|
Colección: | Statistics in practice.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Machine generated contents note: pt. I MOTIVATION
- 1. Introduction
- Reference
- 2. A brief course in R
- 2.1. Origin and development
- 2.2. Getting help
- 2.3. Working with R
- 2.4. Classes, methods and functions
- 2.5. The accompanying package FRAPO
- References
- 3. Financial market data
- 3.1. Stylized facts on financial market returns
- 3.1.1. Stylized facts for univariate series
- 3.1.2. Stylized facts for multivariate series
- 3.2. Implications for risk models
- References
- 4. Measuring risks
- 4.1. Introduction
- 4.2. Synopsis of risk measures
- 4.3. Portfolio risk concepts
- References
- 5. Modern portfolio theory
- 5.1. Introduction
- 5.2. Markowitz portfolios
- 5.3. Empirical mean-variance portfolios
- References
- pt. II RISK MODELLING
- 6. Suitable distributions for returns
- 6.1. Preliminaries
- 6.2. The generalized hyperbolic distribution
- 6.3. The generalized lambda distribution
- 6.4. Synopsis of R packages for the GHD
- 6.4.1. The package fBasics
- 6.4.2. The package GeneralizedHyperbolic
- 6.4.3. The package ghyp
- 6.4.4. The package QRM
- 6.4.5. The package SkewHyperbolic
- 6.4.6. The package VarianceGamma
- 6.5. Synopsis of R packages for GLD
- 6.5.1. The package Davies
- 6.5.2. The package fBasics
- 6.5.3. The package gld
- 6.5.4. The package lmomco
- 6.6. Applications of the GHD to risk modelling
- 6.6.1. Fitting stock returns to the GHD
- 6.6.2. Risk assessment with the GHD
- 6.6.3. Stylized facts revisited
- 6.7. Applications of the GLD to risk modelling and data analysis
- 6.7.1. VaR for a single stock
- 6.7.2. Shape triangle for FTSE 100 constituents
- References
- 7. Extreme value theory
- 7.1. Preliminaries
- 7.2. Extreme value methods and models
- 7.2.1. The block maxima approach
- 7.2.2. rth largest order models
- 7.2.3. The peaks-over-threshold approach
- 7.3. Synopsis of R packages
- 7.3.1. The package evd
- 7.3.2. The package evdbayes
- 7.3.3. The package evir
- 7.3.4. The package fExtremes
- 7.3.5. The packages ismev and extRemes
- 7.3.6. The package POT
- 7.3.7. The package QRM
- 7.3.8. The package Renext
- 7.4. Empirical applications of EVT
- 7.4.1. Section outline
- 7.4.2. Block maxima model for Siemens
- 7.4.3. r block maxima model for BMW
- 7.4.4. POT method for Boeing
- References
- 8. Modelling volatility
- 8.1. Preliminaries
- 8.2. The class of ARCH models
- 8.3. Synopsis of R packages
- 8.3.1. The package bayesGARCH
- 8.3.2. The package ccgarch
- 8.3.3. The package fGarch
- 8.3.4. The package gogarch
- 8.3.5. The packages rugarch and rmgarch
- 8.3.6. The package tseries
- 8.4. Empirical application of volatility models
- References
- 9. Modelling dependence
- 9.1. Overview
- 9.2. Correlation, dependence and distributions
- 9.3. Copulae
- 9.3.1. Motivation
- 9.3.2. Correlations and dependence revisited
- 9.3.3. Classification of copulae
- 9.4. Synopsis of R packages
- 9.4.1. The package BLCOP
- 9.4.2. The packages copula and nacopula
- 9.4.3. The package fCopulae
- 9.4.4. The package gumbel
- 9.4.5. The package QRM
- 9.5. Empirical applications of copulae
- 9.5.1. GARCH-copula model
- 9.5.2. Mixed copula approaches
- References
- pt. III PORTFOLIO OPTIMIZATION APPROACHES
- 10. Robust portfolio optimization
- 10.1. Overview
- 10.2. Robust statistics
- 10.2.1. Motivation
- 10.2.2. Selected robust estimators
- 10.3. Robust optimization
- 10.3.1. Motivation
- 10.3.2. Uncertainty sets and problem formulation
- 10.4. Synopsis of R packages
- 10.4.1. The package covRobust
- 10.4.2. The package fPortfolio
- 10.4.3. The package MASS
- 10.4.4. The package robustbase
- 10.4.5. The package robust
- 10.4.6. The package rrcov
- 10.4.7. The package Rsocp
- 10.5. Empirical applications
- 10.5.1. Portfolio simulation: Robust versus classical statistics
- 10.5.2. Portfolio back-test: Robust versus classical statistics
- 10.5.3. Portfolio back-test: Robust optimization
- References
- 11. Diversification reconsidered
- 11.1. Introduction
- 11.2. Most diversified portfolio
- 11.3. Risk contribution constrained portfolios
- 11.4. Optimal tail-dependent portfolios
- 11.5. Synopsis of R packages
- 11.5.1. The packages DEoptim and RcppDE
- 11.5.2. The package FRAPO
- 11.5.3. The package PortfolioAnalytics
- 11.6. Empirical applications
- 11.6.1. Comparison of approaches
- 11.6.2. Optimal tail-dependent portfolio against benchmark
- 11.6.3. Limiting contributions to expected shortfall
- References
- 12. Risk-optimal portfolios
- 12.1. Overview
- 12.2. Mean-VaR portfolios
- 12.3. Optimal CVaR portfolios
- 12.4. Optimal draw-down portfolios
- 12.5. Synopsis of R packages
- 12.5.1. The package fPortfolio
- 12.5.2. The package FRAPO
- 12.5.3. Packages for linear programming
- 12.5.4. The package PerformanceAnalytics
- 12.6. Empirical applications
- 12.6.1. Minimum-CVaR versus minimum-variance portfolios
- 12.6.2. Draw-down constrained portfolios
- 12.6.3. Back-test comparison for stock portfolio
- References
- 13. Tactical asset allocation
- 13.1. Overview
- 13.2. Survey of selected time series models
- 13.2.1. Univariate time series models
- 13.2.2. Multivariate time series models
- 13.3. Black-Litterman approach
- 13.4. Copula opinion and entropy pooling
- 13.4.1. Introduction
- 13.4.2. The COP model
- 13.4.3. The EP model
- 13.5. Synopsis of R packages
- 13.5.1. The package BLCOP
- 13.5.2. The package dse
- 13.5.3. The package fArma
- 13.5.4. The package forecast
- 13.5.5. The package MSBVAR
- 13.5.6. The package PairTrading
- 13.5.7. The packages urca and vars
- 13.6. Empirical applications
- 13.6.1. Black-Litterman portfolio optimization
- 13.6.2. Copula opinion pooling
- 13.6.3. Protection strategies
- References
- Appendix A Package overview
- A.1. Packages in alphabetical order
- A.2. Packages ordered by topic
- References
- Appendix B Time series data
- B.1. Date-time classes
- B.2. The ts class in the base package stats
- B.3. Irregular-spaced time series
- B.4. The package timeSeries
- B.5. The package zoo
- B.6. The packages tframe and xts
- References
- Appendix C Back-testing and reporting of portfolio strategies
- C.1. R packages for back-testing
- C.2. R facilities for reporting
- C.3. Interfacing databases
- References
- Appendix D Technicalities.