Cargando…

Designing great data products /

Annotation

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Howard, Jeremy (Autor), Zwemer, Margit (Autor), Loukides, Michael Kosta (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly Media, [2012]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn805417849
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 120808s2012 caua o 000 0 eng d
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d CUS  |d OCLCQ  |d DEBSZ  |d TEFOD  |d S4S  |d OCLCF  |d OCLCQ  |d TEFOD  |d OCLCQ  |d EBLCP  |d FEM  |d OCLCQ  |d OCLCA  |d CEF  |d WYU  |d UAB  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 877085395  |a 968091151  |a 969057851 
020 |a 9781449333706  |q (electronic bk.) 
020 |a 1449333702  |q (electronic bk.) 
020 |a 9781449333683  |q (electronic bk.) 
020 |a 1449333680  |q (electronic bk.) 
020 |z 9781449334659 
020 |z 1449334652 
024 3 |a 9781449333706 
029 1 |a AU@  |b 000050012865 
029 1 |a DEBBG  |b BV040901746 
029 1 |a DEBSZ  |b 378291181 
029 1 |a DEBSZ  |b 381377881 
029 1 |a GBVCP  |b 785441239 
035 |a (OCoLC)805417849  |z (OCoLC)877085395  |z (OCoLC)968091151  |z (OCoLC)969057851 
037 |a CL0500000157  |b Safari Books Online 
037 |a 81A70E23-925A-4366-8FD8-5250CB8F6B79  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a QA402.5 
082 0 4 |a 519.7  |2 23 
049 |a UAMI 
100 1 |a Howard, Jeremy,  |e author. 
245 1 0 |a Designing great data products /  |c Jeremy Howard, Margit Zwemer, and Mike Loukides. 
260 |a Sebastopol, CA :  |b O'Reilly Media,  |c [2012] 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
588 0 |a Online resource; title from title screen (Safari, viewed Oct. 4, 2012). 
520 8 |a Annotation  |b In the past few years, weve seen many data products based on predictive modeling. These products range from weather forecasting to recommendation engines like Amazon's. Prediction technology can be interesting and mathematically elegant, but we need to take the next step: going from recommendations to products that can produce optimal strategies for meeting concrete business objectives. We already know how to build these products: they've been in use for the past decade or so, but they're not as common as they should be. This report shows how to take the next step: to go from simple predictions and recommendations to a new generation of data products with the potential to revolutionize entire industries. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Programming (Mathematics) 
650 0 |a Online algorithms. 
650 0 |a Business forecasting. 
650 6 |a Programmation (Mathématiques) 
650 6 |a Algorithmes en ligne. 
650 6 |a Prévision commerciale. 
650 1 7 |a Programming (Mathematics)  |2 bisacsh 
650 7 |a Business forecasting.  |2 fast  |0 (OCoLC)fst00842699 
650 7 |a Online algorithms.  |2 fast  |0 (OCoLC)fst01045924 
650 7 |a Programming (Mathematics)  |2 fast  |0 (OCoLC)fst01078701 
700 1 |a Zwemer, Margit,  |e author. 
700 1 |a Loukides, Michael Kosta,  |e author. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781449334659/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL879956 
994 |a 92  |b IZTAP