|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
OR_ocn795645159 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
120614s2012 enk ob 001 0 eng |
010 |
|
|
|a 2012024649
|
040 |
|
|
|a DLC
|b eng
|e pn
|c DLC
|d YDX
|d DG1
|d CDX
|d IDEBK
|d COO
|d YDXCP
|d E7B
|d EBLCP
|d IEEEE
|d ZMC
|d N$T
|d DEBSZ
|d UMI
|d B24X7
|d UBY
|d TEFOD
|d OCLCF
|d TEFOD
|d OCLCQ
|d DG1
|d MOR
|d LIP
|d PIFAG
|d ZCU
|d OCLCQ
|d MERUC
|d OCLCQ
|d U3W
|d COCUF
|d OCLCQ
|d STF
|d WRM
|d CEF
|d NRAMU
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d TKN
|d OCLCQ
|d UAB
|d OCLCQ
|d DKC
|d OCLCQ
|d OL$
|d OCLCQ
|d ERF
|d UKBTH
|d UHL
|d OCLCQ
|d UKUOP
|d OCLCO
|d OCLCQ
|d UKAHL
|d TAC
|d OCLCQ
|d OCLCO
|d OCLCQ
|d U9X
|d OCLCQ
|d OCLCO
|
066 |
|
|
|c (S
|
019 |
|
|
|a 809555684
|a 811732944
|a 812517233
|a 841331224
|a 1112553664
|a 1113180052
|a 1113764267
|a 1302703250
|a 1355684743
|
020 |
|
|
|a 9781118437988
|q (ePub)
|
020 |
|
|
|a 1118437985
|q (ePub)
|
020 |
|
|
|a 9781118437964
|q (Adobe PDF)
|
020 |
|
|
|a 1118437969
|q (Adobe PDF)
|
020 |
|
|
|a 9781118438008
|q (MobiPocket)
|
020 |
|
|
|a 1118438000
|q (MobiPocket)
|
020 |
|
|
|a 9781118437957
|q (electronic bk.)
|
020 |
|
|
|a 1118437950
|q (electronic bk.)
|
020 |
|
|
|z 9780470663059
|q (hardback)
|
020 |
|
|
|z 0470663057
|
024 |
8 |
|
|a 9786613916372
|
024 |
8 |
|
|a 9781118437988
|
029 |
1 |
|
|a AU@
|b 000049549025
|
029 |
1 |
|
|a AU@
|b 000051432948
|
029 |
1 |
|
|a CHNEW
|b 000939945
|
029 |
1 |
|
|a CHVBK
|b 480202389
|
029 |
1 |
|
|a DEBBG
|b BV041121690
|
029 |
1 |
|
|a DEBBG
|b BV044049835
|
029 |
1 |
|
|a DEBSZ
|b 377426814
|
029 |
1 |
|
|a DEBSZ
|b 396766129
|
029 |
1 |
|
|a DEBSZ
|b 397381646
|
029 |
1 |
|
|a DEBSZ
|b 431219958
|
029 |
1 |
|
|a DEBSZ
|b 449322890
|
029 |
1 |
|
|a DEBSZ
|b 485020955
|
029 |
1 |
|
|a GBVCP
|b 790199262
|
029 |
1 |
|
|a NZ1
|b 14976671
|
029 |
1 |
|
|a AU@
|b 000067095933
|
029 |
1 |
|
|a DKDLA
|b 820120-katalog:999941215205765
|
035 |
|
|
|a (OCoLC)795645159
|z (OCoLC)809555684
|z (OCoLC)811732944
|z (OCoLC)812517233
|z (OCoLC)841331224
|z (OCoLC)1112553664
|z (OCoLC)1113180052
|z (OCoLC)1113764267
|z (OCoLC)1302703250
|z (OCoLC)1355684743
|
037 |
|
|
|a 10.1002/9781118437957
|b Wiley InterScience
|n http://www3.interscience.wiley.com
|
037 |
|
|
|a 347C45D1-7134-4AC6-AFD6-80E756114D12
|b OverDrive, Inc.
|n http://www.overdrive.com
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a Q325.5
|
072 |
|
7 |
|a COM
|x 005030
|2 bisacsh
|
072 |
|
7 |
|a COM
|x 004000
|2 bisacsh
|
082 |
0 |
0 |
|a 006.3/1
|2 23
|
084 |
|
|
|a SCI067000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Schaathun, Hans Georg.
|
245 |
1 |
0 |
|a Machine learning in image steganalysis /
|c Hans Georg Schaathun.
|
260 |
|
|
|a Chichester, West Sussex, United Kingdom :
|b IEEE/Wiley,
|c 2012.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
520 |
|
|
|a "The only book to look at steganalysis from the perspective of machine learning theory, and to apply the common technique of machine learning to the particular field of steganalysis; ideal for people working in both disciplines"--
|c Provided by publisher.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record and CIP data provided by publisher.
|
505 |
0 |
0 |
|6 880-01
|t Steganography and Steganalysis --
|t Getting Started with a Classifier --
|t Features. Histogram Analysis --
|t Bit-Plane Analysis --
|t More Spatial Domain Features --
|t The Wavelets Domain --
|t Steganalysis in the JPEG Domain --
|t Calibration Techniques --
|t Classifiers. Simulation and Evaluation --
|t Support Vector Machines --
|t Other Classification Algorithms --
|t Feature Selection and Evaluation --
|t The Steganalysis Problem --
|t Future of the Field.
|
505 |
0 |
|
|a Front Matter -- Overview. Introduction -- Steganography and Steganalysis -- Getting Started with a Classifier -- Features. Histogram Analysis -- Bit-Plane Analysis -- More Spatial Domain Features -- The Wavelets Domain -- Steganalysis in the JPEG Domain -- Calibration Techniques -- Classifiers. Simulation and Evaluation -- Support Vector Machines -- Other Classification Algorithms -- Feature Selection and Evaluation -- The Steganalysis Problem -- Future of the Field -- Bibliography -- Index.
|
542 |
|
|
|f Copyright © Wiley-IEEE Press
|g 2012
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Wavelets (Mathematics)
|
650 |
|
0 |
|a Data encryption (Computer science)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Ondelettes.
|
650 |
|
6 |
|a Chiffrement (Informatique)
|
650 |
|
7 |
|a SCIENCE
|x Waves & Wave Mechanics.
|2 bisacsh
|
650 |
|
7 |
|a Data encryption (Computer science)
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Wavelets (Mathematics)
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Schaathun, Hans Georg.
|t Machine learning in image steganalysis.
|d Hoboken : Wiley, 2012
|z 9780470663059
|w (DLC) 2012016642
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781118437988/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g pt. I
|t OVERVIEW --
|g 1.
|t Introduction --
|g 1.1.
|t Real Threat or Hype--
|g 1.2.
|t Artificial Intelligence and Learning --
|g 1.3.
|t How to Read this Book --
|g 2.
|t Steganography and Steganalysis --
|g 2.1.
|t Cryptography versus Steganography --
|g 2.2.
|t Steganography --
|g 2.2.1.
|t Prisoners' Problem --
|g 2.2.2.
|t Covers -- Synthesis and Modification --
|g 2.2.3.
|t Keys and Kerckhoffs' Principle --
|g 2.2.4.
|t LSB Embedding --
|g 2.2.5.
|t Steganography and Watermarking --
|g 2.2.6.
|t Different Media Types --
|g 2.3.
|t Steganalysis --
|g 2.3.1.
|t Objective of Steganalysis --
|g 2.3.2.
|t Blind and Targeted Steganalysis --
|g 2.3.3.
|t Main Approaches to Steganalysis --
|g 2.3.4.
|t Example: Pairs of Values --
|g 2.4.
|t Summary and Notes --
|g 3.
|t Getting Started with a Classifier --
|g 3.1.
|t Classification --
|g 3.1.1.
|t Learning Classifiers --
|g 3.1.2.
|t Accuracy --
|g 3.2.
|t Estimation and Confidence --
|g 3.3.
|t Using libSVM --
|g 3.3.1.
|t Training and Testing --
|g 3.3.2.
|t Grid Search and Cross-validation --
|g 3.4.
|t Using Python --
|g 3.4.1.
|t Why we use Python --
|g 3.4.2.
|t Getting Started with Python --
|g 3.4.3.
|t Scientific Computing --
|g 3.4.4.
|t Python Imaging Library --
|g 3.4.5.
|t Example: Image Histogram --
|g 3.5.
|t Images for Testing --
|g 3.6.
|t Further Reading --
|g pt. II
|t FEATURES --
|g 4.
|t Histogram Analysis --
|g 4.1.
|t Early Histogram Analysis --
|g 4.2.
|t Notation --
|g 4.3.
|t Additive Independent Noise --
|g 4.3.1.
|t Effect of Noise --
|g 4.3.2.
|t Histogram Characteristic Function --
|g 4.3.3.
|t Moments of the Characteristic Function --
|g 4.3.4.
|t Amplitude of Local Extrema --
|g 4.4.
|t Multi-dimensional Histograms --
|g 4.4.1.
|t HCF Features for Colour Images --
|g 4.4.2.
|t Co-occurrence Matrix --
|g 4.5.
|t Experiment and Comparison --
|g 5.
|t Bit-plane Analysis --
|g 5.1.
|t Visual Steganalysis --
|g 5.2.
|t Autocorrelation Features --
|g 5.3.
|t Binary Similarity Measures --
|g 5.4.
|t Evaluation and Comparison --
|g 6.
|t More Spatial Domain Features --
|g 6.1.
|t Difference Matrix --
|g 6.1.1.
|t EM Features of Chen et al. --
|g 6.1.2.
|t Markov Models and the SPAM Features --
|g 6.1.3.
|t Higher-order Differences --
|g 6.1.4.
|t Run-length Analysis --
|g 6.2.
|t Image Quality Measures --
|g 6.3.
|t Colour Images --
|g 6.4.
|t Experiment and Comparison --
|g 7.
|t Wavelets Domain --
|g 7.1.
|t Visual View --
|g 7.2.
|t Wavelet Domain --
|g 7.2.1.
|t Fast Wavelet Transform --
|g 7.2.2.
|t Example: The Haar Wavelet --
|g 7.2.3.
|t Wavelet Transform in Python --
|g 7.2.4.
|t Other Wavelet Transforms --
|g 7.3.
|t Farid's Features --
|g 7.3.1.
|t Image Statistics --
|g 7.3.2.
|t Linear Predictor --
|g 7.3.3.
|t Notes --
|g 7.4.
|t HCF in the Wavelet Domain --
|g 7.4.1.
|t Notes and Further Reading --
|g 7.5.
|t Denoising and the WAM Features --
|g 7.5.1.
|t Denoising Algorithm --
|g 7.5.2.
|t Locally Adaptive LAW-ML --
|g 7.5.3.
|t Wavelet Absolute Moments --
|g 7.6.
|t Experiment and Comparison --
|g 8.
|t Steganalysis in the JPEG Domain --
|g 8.1.
|t JPEG Compression --
|g 8.1.1.
|t Compression --
|g 8.1.2.
|t Programming JPEG Steganography --
|g 8.1.3.
|t Embedding in JPEG --
|g 8.2.
|t Histogram Analysis --
|g 8.2.1.
|t JPEG Histogram --
|g 8.2.2.
|t First-order Features --
|g 8.2.3.
|t Second-order Features --
|g 8.2.4.
|t Histogram Characteristic Function --
|g 8.3.
|t Blockiness --
|g 8.4.
|t Markov Model-based Features --
|g 8.5.
|t Conditional Probabilities --
|g 8.6.
|t Experiment and Comparison --
|g 9.
|t Calibration Techniques --
|g 9.1.
|t Calibrated Features --
|g 9.2.
|t JPEG Calibration --
|g 9.2.1.
|t FRI-23 Feature Set --
|g 9.2.2.
|t Pevny Features and Cartesian Calibration --
|g 9.3.
|t Calibration by Downsampling --
|g 9.3.1.
|t Downsampling as Calibration --
|g 9.3.2.
|t Calibrated HCF-COM --
|g 9.3.3.
|t Sum and Difference Images --
|g 9.3.4.
|t Features for Colour Images --
|g 9.3.5.
|t Pixel Selection --
|g 9.3.6.
|t Other Features Based on Downsampling --
|g 9.3.7.
|t Evaluation and Notes --
|g 9.4.
|t Calibration in General --
|g 9.5.
|t Progressive Randomisation --
|g pt. III
|t CLASSIFIERS --
|g 10.
|t Simulation and Evaluation --
|g 10.1.
|t Estimation and Simulation --
|g 10.1.1.
|t Binomial Distribution --
|g 10.1.2.
|t Probabilities and Sampling --
|g 10.1.3.
|t Monte Carlo Simulations --
|g 10.1.4.
|t Confidence Intervals --
|g 10.2.
|t Scalar Measures --
|g 10.2.1.
|t Two Error Types --
|g 10.2.2.
|t Common Scalar Measures --
|g 10.3.
|t Receiver Operating Curve --
|g 10.3.1.
|t libSVM API for Python --
|g 10.3.2.
|t ROC Curve --
|g 10.3.3.
|t Choosing a Point on the ROC Curve --
|g 10.3.4.
|t Confidence and Variance --
|g 10.3.5.
|t Area Under the Curve --
|g 10.4.
|t Experimental Methodology --
|g 10.4.1.
|t Feature Storage --
|g 10.4.2.
|t Parallel Computation --
|g 10.4.3.
|t Dangers of Large-scale Experiments --
|g 10.5.
|t Comparison and Hypothesis Testing --
|g 10.5.1.
|t Hypothesis Test --
|g 10.5.2.
|t Comparing Two Binomial Proportions --
|g 10.6.
|t Summary --
|g 11.
|t Support Vector Machines --
|g 11.1.
|t Linear Classifiers --
|g 11.1.1.
|t Linearly Separable Problems --
|g 11.1.2.
|t Non-separable Problems --
|g 11.2.
|t Kernel Function --
|g 11.2.1.
|t Example: The XOR Function --
|g 11.2.2.
|t SVM Algorithm --
|g 11.3.
|t ν-SVM --
|g 11.4.
|t Multi-class Methods --
|g 11.5.
|t One-class Methods --
|g 11.5.1.
|t One-class SVM Solution --
|g 11.5.2.
|t Practical Problems --
|g 11.5.3.
|t Multiple Hyperspheres --
|g 11.6.
|t Summary --
|g 12.
|t Other Classification Algorithms --
|g 12.1.
|t Bayesian Classifiers --
|g 12.1.1.
|t Classification Regions and Errors --
|g 12.1.2.
|t Misclassification Risk --
|g 12.1.3.
|t Naive Bayes Classifier --
|g 12.1.4.
|t Security Criterion --
|g 12.2.
|t Estimating Probability Distributions --
|g 12.2.1.
|t Histogram --
|g 12.2.2.
|t Kernel Density Estimator --
|g 12.3.
|t Multivariate Regression Analysis --
|g 12.3.1.
|t Linear Regression --
|g 12.3.2.
|t Support Vector Regression --
|g 12.4.
|t Unsupervised Learning --
|g 12.4.1.
|t K-means Clustering --
|g 12.5.
|t Summary --
|g 13.
|t Feature Selection and Evaluation --
|g 13.1.
|t Overfitting and Underfitting --
|g 13.1.1.
|t Feature Selection and Feature Extraction --
|g 13.2.
|t Scalar Feature Selection --
|g 13.2.1.
|t Analysis of Variance --
|g 13.3.
|t Feature Subset Selection --
|g 13.3.1.
|t Subset Evaluation --
|g 13.3.2.
|t Search Algorithms --
|g 13.4.
|t Selection Using Information Theory --
|g 13.4.1.
|t Entropy --
|g 13.4.2.
|t Mutual Information --
|g 13.4.3.
|t Multivariate Information --
|g 13.4.4.
|t Information Theory with Continuous Sets --
|g 13.4.5.
|t Estimation of Entropy and Information --
|g 13.4.6.
|t Ranking Features --
|g 13.5.
|t Boosting Feature Selection --
|g 13.6.
|t Applications in Steganalysis --
|g 13.6.1.
|t Correlation Coefficient --
|g 13.6.2.
|t Optimised Feature Vectors for JPEG --
|g 14.
|t Steganalysis Problem --
|g 14.1.
|t Different Use Cases --
|g 14.1.1.
|t Who are Alice and Bob--
|g 14.1.2.
|t Wendy's Role --
|g 14.1.3.
|t Pooled Steganalysis --
|g 14.1.4.
|t Quantitative Steganalysis --
|g 14.2.
|t Images and Training Sets --
|g 14.2.1.
|t Choosing the Cover Source --
|g 14.2.2.
|t Training Scenario --
|g 14.2.3.
|t Steganalytic Game --
|g 14.3.
|t Composite Classifier Systems --
|g 14.3.1.
|t Fusion --
|g 14.3.2.
|t Multi-layer Classifier for JPEG --
|g 14.3.3.
|t Benefits of Composite Classifiers --
|g 14.4.
|t Summary --
|g 15.
|t Future of the Field --
|g 15.1.
|t Image Forensics --
|g 15.2.
|t Conclusions and Notes.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25045848
|
938 |
|
|
|a Books 24x7
|b B247
|n bks00051199
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 21782462
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1022347
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10602086
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 481819
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 391637
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9808280
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9672715
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 9661974
|
994 |
|
|
|a 92
|b IZTAP
|