Cargando…

Data mining : concepts and techniques /

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the kn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Han, Jiawei
Otros Autores: Kamber, Micheline, Pei, Jian (Computer scientist)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Waltham, MA : Morgan Kaufmann/Elsevier, ©2012.
Edición:3rd ed.
Colección:Morgan Kaufmann series in data management systems.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn795224972
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 120612s2012 mauah ob 001 0 eng d
010 |z  2011010635 
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d DEBSZ  |d OCLCQ  |d OCLCA  |d OCLCQ  |d OCLCF  |d OCLCQ  |d STF  |d WRM  |d CEF  |d OCLCQ  |d UWO  |d A6Q  |d VT2  |d NJP  |d VLY  |d UKCRE  |d QGK  |d OCLCO  |d OCLCQ 
019 |a 1037751679  |a 1038679187  |a 1071926190  |a 1083561345  |a 1087380641  |a 1099618693  |a 1114099511  |a 1129374764  |a 1153013818  |a 1162562547  |a 1192338226  |a 1202556820  |a 1241925996 
020 |a 0123814790 
020 |a 9780123814791 
020 |a 9780123814807  |q (e-book) 
020 |a 0123814804  |q (e-book) 
020 |z 9780123814791 
020 |a 1283171171 
020 |a 9781283171175 
020 |a 9786613171177 
020 |a 6613171174 
024 8 |a 9786613171177 
029 1 |a AU@  |b 000053283090 
029 1 |a DEBSZ  |b 370594320 
029 1 |a GBVCP  |b 785361596 
035 |a (OCoLC)795224972  |z (OCoLC)1037751679  |z (OCoLC)1038679187  |z (OCoLC)1071926190  |z (OCoLC)1083561345  |z (OCoLC)1087380641  |z (OCoLC)1099618693  |z (OCoLC)1114099511  |z (OCoLC)1129374764  |z (OCoLC)1153013818  |z (OCoLC)1162562547  |z (OCoLC)1192338226  |z (OCoLC)1202556820  |z (OCoLC)1241925996 
037 |a CL0500000143  |b Safari Books Online 
050 4 |a QA76.9.D343  |b H36 2011 
082 0 4 |a 006.3/12  |2 22 
049 |a UAMI 
100 1 |a Han, Jiawei. 
245 1 0 |a Data mining :  |b concepts and techniques /  |c Jiawei Han, Micheline Kamber, Jian Pei. 
250 |a 3rd ed. 
260 |a Waltham, MA :  |b Morgan Kaufmann/Elsevier,  |c ©2012. 
300 |a 1 online resource (xxxv, 703 pages) :  |b illustrations, facsimiles. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
490 1 |a Morgan Kaufmann series in data management systems 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 633-671) and index. 
505 0 0 |t Front Cover --  |t Data Mining: Concepts and Techniques --  |t Copyright --  |t Dedication --  |t Table of Contents --  |t Foreword --  |t Foreword to Second Edition --  |t Preface --  |t Acknowledgments --  |t About the Authors --  |t Chapter 1. Introduction --  |t 1.1 Why Data Mining? --  |t 1.2 What Is Data Mining? --  |t 1.3 What Kinds of Data Can Be Mined? --  |t 1.4 What Kinds of Patterns Can Be Mined? --  |t 1.5 Which Technologies Are Used? --  |t 1.6 Which Kinds of Applications Are Targeted? --  |t 1.7 Major Issues in Data Mining --  |t 1.8 Summary --  |t 1.9 Exercises --  |t 1.10 Bibliographic Notes --  |t Chapter 2. Getting to Know Your Data --  |t 2.1 Data Objects and Attribute Types --  |t 2.2 Basic Statistical Descriptions of Data --  |t 2.3 Data Visualization --  |t 2.4 Measuring Data Similarity and Dissimilarity --  |t 2.5 Summary --  |t 2.6 Exercises --  |t 2.7 Bibliographic Notes --  |t Chapter 3. Data Preprocessing --  |t 3.1 Data Preprocessing: An Overview --  |t 3.2 Data Cleaning --  |t 3.3 Data Integration --  |t 3.4 Data Reduction --  |t 3.5 Data Transformation and Data Discretization --  |t 3.6 Summary --  |t 3.7 Exercises --  |t 3.8 Bibliographic Notes --  |t Chapter 4. Data Warehousing and Online Analytical Processing --  |t 4.1 Data Warehouse: Basic Concepts --  |t 4.2 Data Warehouse Modeling: Data Cube and OLAP --  |t 4.3 Data Warehouse Design and Usage --  |t 4.4 Data Warehouse Implementation --  |t 4.5 Data Generalization by Attribute-Oriented Induction --  |t 4.6 Summary --  |t 4.7 Exercises --  |t 4.8 Bibliographic Notes --  |t Chapter 5. Data Cube Technology --  |t 5.1 Data Cube Computation: Preliminary Concepts --  |t 5.2 Data Cube Computation Methods --  |t 5.3 Processing Advanced Kinds of Queries by Exploring Cube Technology --  |t 5.4 Multidimensional Data Analysis in Cube Space --  |t 5.5 Summary --  |t 5.6 Exercises --  |t 5.7 Bibliographic Notes --  |t Chapter 6. Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods --  |t 6.1 Basic Concepts --  |t 6.2 Frequent Itemset Mining Methods. 
505 8 0 |t 6.3 Which Patterns Are Interesting?-Pattern Evaluation Methods --  |t 6.4 Summary --  |t 6.5 Exercises --  |t 6.6 Bibliographic Notes --  |t Chapter 7. Advanced Pattern Mining --  |t 7.1 Pattern Mining: A Road Map --  |t 7.2 Pattern Mining in Multilevel, Multidimensional Space --  |t 7.3 Constraint-Based Frequent Pattern Mining --  |t 7.4 Mining High-Dimensional Data and Colossal Patterns --  |t 7.5 Mining Compressed or Approximate Patterns --  |t 7.6 Pattern Exploration and Application --  |t 7.7 Summary --  |t 7.8 Exercises --  |t 7.9 Bibliographic Notes --  |t Chapter 8. Classification: Basic Concepts --  |t 8.1 Basic Concepts --  |t 8.2 Decision Tree Induction --  |t 8.3 Bayes Classification Methods --  |t 8.4 Rule-Based Classification --  |t 8.5 Model Evaluation and Selection --  |t 8.6 Techniques to Improve Classification Accuracy --  |t 8.7 Summary --  |t 8.8 Exercises --  |t 8.9 Bibliographic Notes --  |t Chapter 9. Classification: Advanced Methods --  |t 9.1 Bayesian Belief Networks --  |t 9.2 Classification by Backpropagation --  |t 9.3 Support Vector Machines --  |t 9.4 Classification Using Frequent Patterns --  |t 9.5 Lazy Learners (or Learning from Your Neighbors) --  |t 9.6 Other Classification Methods --  |t 9.7 Additional Topics Regarding Classification --  |t 9.8 Summary --  |t 9.9 Exercises --  |t 9.10 Bibliographic Notes --  |t Chapter 10. Cluster Analysis: Basic Concepts and Methods --  |t 10.1 Cluster Analysis --  |t 10.2 Partitioning Methods --  |t 10.3 Hierarchical Methods --  |t 10.4 Density-Based Methods --  |t 10.5 Grid-Based Methods --  |t 10.6 Evaluation of Clustering --  |t 10.7 Summary --  |t 10.8 Exercises --  |t 10.9 Bibliographic Notes --  |t Chapter 11. Advanced Cluster Analysis --  |t 11.1 Probabilistic Model-Based Clustering --  |t 11.2 Clustering High-Dimensional Data --  |t 11.3 Clustering Graph and Network Data --  |t 11.4 Clustering with Constraints --  |t 11.5 Summary --  |t 11.6 Exercises --  |t 11.7 Bibliographic Notes --  |t Chapter 12. Outlier Detection --  |t 12.1 Outliers and Outlier Analysis. 
505 8 0 |t 12.2 Outlier Detection Methods --  |t 12.3 Statistical Approaches --  |t 12.4 Proximity-Based Approaches --  |t 12.5 Clustering-Based Approaches --  |t 12.6 Classification-Based Approaches --  |t 12.7 Mining Contextual and Collective Outliers --  |t 12.8 Outlier Detection in High-Dimensional Data --  |t 12.9 Summary --  |t 12.10 Exercises --  |t 12.11 Bibliographic Notes --  |t Chapter 13. Data Mining Trends and Research Frontiers --  |t 13.1 Mining Complex Data Types --  |t 13.2 Other Methodologies of Data Mining --  |t 13.3 Data Mining Applications --  |t 13.4 Data Mining and Society --  |t 13.5 Data Mining Trends --  |t 13.6 Summary --  |t 13.7 Exercises --  |t 13.8 Bibliographic Notes --  |t Bibliography --  |t Index. 
520 |a Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data. 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Data mining. 
650 6 |a Exploration de données (Informatique) 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
700 1 |a Kamber, Micheline. 
700 1 |a Pei, Jian  |c (Computer scientist) 
776 0 8 |i Print version:  |a Han, Jiawei.  |t Data mining.  |b 3rd ed.  |d Amsterdam ; Boston : Elsevier/Morgan Kaufmann, ©2012  |z 9780123814791  |w (DLC) 2011010635  |w (OCoLC)711777246 
830 0 |a Morgan Kaufmann series in data management systems. 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780123814791/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
994 |a 92  |b IZTAP