Cargando…

Microfabrication for industrial applications /

This book focuses on the industrial perspective for micro- and nanofabrication methods including large-scale manufacturing, transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. It gives a history of miniaturization, micro- and nanofabrication, and surveys industr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Luttge, Regina
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford ; Waltham, MA : William Andrew, 2011.
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Note continued: 3.3.6. Patterning Ceramic Materials at Nanoscale Resolution
  • 3.4. Speciality Substrates
  • 3.4.1. Silicon-on-Insulator (SOI)
  • 3.4.2. Electro-Optic Substrates
  • 3.5. Advanced Non-Silicon and Silicon Hybrid Devices
  • 3.5.1. Nanofabrication of Information Storage Devices
  • 3.5.2. Integrated Optics
  • 3.6. Planar Lightwave Circuits
  • 3.7. Fabrication Example of an Integrated Optical Device
  • 3.8. Integrated Optics in the MST Foundry Service Industry: A Case Study
  • 3.9. Conclusions
  • References
  • 4.1. Top-Down, Bottom-Up
  • 4.1.1. Nanolithography
  • 4.1.2. Introduction to the Need for New Lithographic Techniques
  • 4.1.3. Nanolithographic Techniques
  • 4.1.4. Top-Down Nanolithographic Principles
  • 4.1.5. Nanolithographic Technologies for the Microelectronics Industry
  • 4.1.6. Nanoimprint Technology
  • 4.1.7. Case Studies: Nanoimprint Applications
  • 4.1.8. Emerging Nanolithographic Technologies
  • 4.1.9. Nanolithography in R & D.
  • Note continued: 4.1.10. LIL Development at MESA+ NanoLab NL
  • 4.1.11. Case Study: Laser Interference Lithography Nanoarrays for Cell Biology
  • 4.1.12. Concluding Remarks on Emerging Nanolithography
  • 4.2. Nanomaterials
  • 4.2.1. Ordered Oxides
  • 4.2.2. Oxide Nanoarrays: Definitions and Background
  • 4.2.3. Principles of Oxide Nanoarray Fabrication
  • 4.2.4. Ordered Oxides in Medical Applications
  • 4.3. Where Are We9
  • 4.4. Where to Go from Here?
  • References
  • 5.1. Application Fields
  • 5.2. Overview of Materials
  • 5.2.1. Single Crystals
  • 5.2.2. Amorphous Materials
  • 5.3. Thick and Thin Film Hybrid Materials
  • 5.4. Microactuation
  • 5.5. Packaged Sensors
  • 5.5.1. From Die to Device Level
  • 5.5.2. From Device Level to System
  • 5.6. Silicon as a Mechanical Material in Resonant Microdevices
  • 5.6.1. Resonant Sensors
  • 5.6.2. Diaphragms as Micromechanical Couplers
  • 5.7. Information Society
  • 5.7.1. Micro-Opto-Electromechanical Systems
  • 5.8. Conclusions
  • References.
  • Note continued: 6.1. Application Field
  • 6.2. Sensor Principles for the Collection of (Bio)Chemical Information
  • 6.2.1. Optical Techniques
  • 6.2.2. Electrochemical Techniques
  • 6.2.3. Methodology of Sensor Development
  • 6.3. Integrated chemFET Device: Case Study of a Semiconductor-Based pH Sensor Development
  • 6.4. Integrated Clinical Diagnostics: A Medical Application for Electrochemical Sensor Arrays
  • 6.4.1. From Microarray to Biochip Technology
  • 6.4.2. Cell-Based Biosensor
  • 6.5. Conclusions
  • References
  • 7.1. Application Fields
  • 7.2. Microfluidic Components
  • 7.2.1. Passive Microvalves
  • 7.2.2. Active Microvalves
  • 7.3. Controlled Transport by Diffusion
  • 7.4. Integration for Microfluidic Transport, Sensing and Dispensing
  • 7.5. Lab-on-a-Chip
  • 7.5.1. Miniaturized Particle and Cell Sorting Devices
  • 7.5.2. Cell Cultures and Fermentation Processes on Chip
  • 7.6. Device-to-World Connections: The MATAS Concept.
  • Note continued: 7.7. From the Lab Bench to Industry: Microchip Capillary Electrophoresis
  • 7.7.1. Is There a Need for a Microfluidic-Integrated System at the Doctor's Surgery?
  • 7.7.2. The Technology Behind the Lithium Case
  • 7.7.3. Microchip Capillary Electrophoresis Instrumentation
  • 7.7.4. Sample to Chip Interface
  • 7.7.5. Samples
  • 7.7.6. Results and Conclusions from the LICETAS Project
  • 7.8. Conclusions
  • References
  • 8.1. Microneedle Research at University of Twente and its Spin-Off
  • 8.1.1. Desk Research: Microneedle Arrays, Microfabrication and Transdermal Delivery of Insulin
  • 8.1.2. Is There a Need for Microneedles?
  • 8.1.3. Microneedles by Microfabrication Technologies
  • 8.1.4. Are Microneedles Ready for Insulin Delivery?
  • 8.1.5. Design Aspects for Microneedle Insulin Delivery
  • 8.2. MNA-4-Insulin: A Brief Evaluation
  • 8.3. Conclusions
  • References
  • 9.1. Environmental Aspects
  • 9.2. Health Aspects of Nanoparticles
  • 9.3. Conclusions
  • References.