Microfabrication for industrial applications /
This book focuses on the industrial perspective for micro- and nanofabrication methods including large-scale manufacturing, transfer of concepts from lab to factory, process tolerance, yield, robustness, and cost. It gives a history of miniaturization, micro- and nanofabrication, and surveys industr...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Oxford ; Waltham, MA :
William Andrew,
2011.
|
Colección: | Micro & nano technologies.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- Note continued: 3.3.6. Patterning Ceramic Materials at Nanoscale Resolution
- 3.4. Speciality Substrates
- 3.4.1. Silicon-on-Insulator (SOI)
- 3.4.2. Electro-Optic Substrates
- 3.5. Advanced Non-Silicon and Silicon Hybrid Devices
- 3.5.1. Nanofabrication of Information Storage Devices
- 3.5.2. Integrated Optics
- 3.6. Planar Lightwave Circuits
- 3.7. Fabrication Example of an Integrated Optical Device
- 3.8. Integrated Optics in the MST Foundry Service Industry: A Case Study
- 3.9. Conclusions
- References
- 4.1. Top-Down, Bottom-Up
- 4.1.1. Nanolithography
- 4.1.2. Introduction to the Need for New Lithographic Techniques
- 4.1.3. Nanolithographic Techniques
- 4.1.4. Top-Down Nanolithographic Principles
- 4.1.5. Nanolithographic Technologies for the Microelectronics Industry
- 4.1.6. Nanoimprint Technology
- 4.1.7. Case Studies: Nanoimprint Applications
- 4.1.8. Emerging Nanolithographic Technologies
- 4.1.9. Nanolithography in R & D.
- Note continued: 4.1.10. LIL Development at MESA+ NanoLab NL
- 4.1.11. Case Study: Laser Interference Lithography Nanoarrays for Cell Biology
- 4.1.12. Concluding Remarks on Emerging Nanolithography
- 4.2. Nanomaterials
- 4.2.1. Ordered Oxides
- 4.2.2. Oxide Nanoarrays: Definitions and Background
- 4.2.3. Principles of Oxide Nanoarray Fabrication
- 4.2.4. Ordered Oxides in Medical Applications
- 4.3. Where Are We9
- 4.4. Where to Go from Here?
- References
- 5.1. Application Fields
- 5.2. Overview of Materials
- 5.2.1. Single Crystals
- 5.2.2. Amorphous Materials
- 5.3. Thick and Thin Film Hybrid Materials
- 5.4. Microactuation
- 5.5. Packaged Sensors
- 5.5.1. From Die to Device Level
- 5.5.2. From Device Level to System
- 5.6. Silicon as a Mechanical Material in Resonant Microdevices
- 5.6.1. Resonant Sensors
- 5.6.2. Diaphragms as Micromechanical Couplers
- 5.7. Information Society
- 5.7.1. Micro-Opto-Electromechanical Systems
- 5.8. Conclusions
- References.
- Note continued: 6.1. Application Field
- 6.2. Sensor Principles for the Collection of (Bio)Chemical Information
- 6.2.1. Optical Techniques
- 6.2.2. Electrochemical Techniques
- 6.2.3. Methodology of Sensor Development
- 6.3. Integrated chemFET Device: Case Study of a Semiconductor-Based pH Sensor Development
- 6.4. Integrated Clinical Diagnostics: A Medical Application for Electrochemical Sensor Arrays
- 6.4.1. From Microarray to Biochip Technology
- 6.4.2. Cell-Based Biosensor
- 6.5. Conclusions
- References
- 7.1. Application Fields
- 7.2. Microfluidic Components
- 7.2.1. Passive Microvalves
- 7.2.2. Active Microvalves
- 7.3. Controlled Transport by Diffusion
- 7.4. Integration for Microfluidic Transport, Sensing and Dispensing
- 7.5. Lab-on-a-Chip
- 7.5.1. Miniaturized Particle and Cell Sorting Devices
- 7.5.2. Cell Cultures and Fermentation Processes on Chip
- 7.6. Device-to-World Connections: The MATAS Concept.
- Note continued: 7.7. From the Lab Bench to Industry: Microchip Capillary Electrophoresis
- 7.7.1. Is There a Need for a Microfluidic-Integrated System at the Doctor's Surgery?
- 7.7.2. The Technology Behind the Lithium Case
- 7.7.3. Microchip Capillary Electrophoresis Instrumentation
- 7.7.4. Sample to Chip Interface
- 7.7.5. Samples
- 7.7.6. Results and Conclusions from the LICETAS Project
- 7.8. Conclusions
- References
- 8.1. Microneedle Research at University of Twente and its Spin-Off
- 8.1.1. Desk Research: Microneedle Arrays, Microfabrication and Transdermal Delivery of Insulin
- 8.1.2. Is There a Need for Microneedles?
- 8.1.3. Microneedles by Microfabrication Technologies
- 8.1.4. Are Microneedles Ready for Insulin Delivery?
- 8.1.5. Design Aspects for Microneedle Insulin Delivery
- 8.2. MNA-4-Insulin: A Brief Evaluation
- 8.3. Conclusions
- References
- 9.1. Environmental Aspects
- 9.2. Health Aspects of Nanoparticles
- 9.3. Conclusions
- References.