Cargando…

Introduction to abstract algebra /

Praise for the Third Edition". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."--Zentralblatt MATHThe Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Nicholson, W. Keith
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : John Wiley & Sons, ©2012.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn792684114
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120430s2012 njua ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d GZM  |d OCLCQ  |d YDXCP  |d UMI  |d DEBSZ  |d OCLCQ  |d OCLCF  |d CNO  |d OCLCQ  |d CEF  |d AU@  |d OCLCQ  |d WYU  |d UAB  |d VT2  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 846945242  |a 872697488  |a 1054925653  |a 1058833507  |a 1066597141  |a 1103280136 
020 |a 9781118311738 
020 |a 1118311736 
020 |z 9781118135358  |q (cloth) 
020 |z 1118135350  |q (cloth) 
029 1 |a AU@  |b 000052281936 
029 1 |a AU@  |b 000058028146 
029 1 |a AU@  |b 000062623755 
029 1 |a DEBBG  |b BV041430642 
029 1 |a DEBSZ  |b 398264376 
029 1 |a DEBSZ  |b 431077126 
035 |a (OCoLC)792684114  |z (OCoLC)846945242  |z (OCoLC)872697488  |z (OCoLC)1054925653  |z (OCoLC)1058833507  |z (OCoLC)1066597141  |z (OCoLC)1103280136 
037 |a CL0500000219  |b Safari Books Online 
050 4 |a QA162 .N53 2012 
082 0 4 |a 512.02  |a 512/.02 
049 |a UAMI 
100 1 |a Nicholson, W. Keith. 
245 1 0 |a Introduction to abstract algebra /  |c W. Keith Nicholson. 
250 |a 4th ed. 
260 |a Hoboken :  |b John Wiley & Sons,  |c ©2012. 
300 |a 1 online resource (1285 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references (pages 1137-1141) and index. 
505 0 |a Cover; Title Page; Copyright; Preface; Acknowledgments; Notation Used in the Text; A Sketch of the History of Algebra to 1929; Chapter 0: Preliminaries; 0.1 Proofs; 0.2 Sets; 0.3 Mappings; 0.4 Equivalences; Chapter 1: Integers and Permutations; 1.1 Induction; 1.2 Divisors and Prime Factorization; 1.3 Integers Modulo n; 1.4 Permutations; 1.5 An Application to Cryptography; Chapter 2: Groups; 2.1 Binary Operations; 2.2 Groups; 2.3 Subgroups; 2.4 Cyclic Groups and the Order of an Element; 2.5 Homomorphisms and Isomorphisms; 2.6 Cosets and Lagrange's Theorem; 2.7 Groups of Motions and Symmetries. 
505 8 |a 2.8 Normal Subgroups2.9 Factor Groups; 2.10 The Isomorphism Theorem; 2.11 An Application to Binary Linear Codes; Chapter 3: Rings; 3.1 Examples and Basic Properties; 3.2 Integral Domains and Fields; 3.2 Exercises; 3.3 Ideals and Factor Rings; 3.4 Homomorphisms; 3.5 Ordered Integral Domains; Chapter 4: Polynomials; 4.1 Polynomials; 4.2 Factorization of Polynomials over a Field; 4.3 Factor Rings of Polynomials over a Field; 4.4 Partial Fractions; 4.5 Symmetric Polynomials; 4.6 Formal Construction of Polynomials; Chapter 5: Factorization in Integral Domains. 
505 8 |a 5.1 Irreducibles and Unique Factorization5.2 Principal Ideal Domains; Chapter 6: Fields; 6.1 Vector Spaces; 6.2 Algebraic Extensions; 6.3 Splitting Fields; 6.4 Finite Fields; 6.5 Geometric Constructions; 6.6 The Fundamental Theorem of Algebra; 6.7 An Application to Cyclic and BCH Codes; Chapter 7: Modules over Principal Ideal Domains; 7.1 Modules; 7.2 Modules Over a PID; Chapter 8: p-Groups and the Sylow Theorems; 8.1 Products and Factors; 8.2 Cauchy's Theorem; 8.3 Group Actions; 8.4 The Sylow Theorems; 8.5 Semidirect Products; 8.6 An Application to Combinatorics. 
505 8 |a Chapter 9: Series of Subgroups9.1 The Jordan-Hölder Theorem; 9.2 Solvable Groups; 9.3 Nilpotent Groups; Chapter 10: Galois Theory; 10.1 Galois Groups and Separability; 10.2 The Main Theorem of Galois Theory; 10.3 Insolvability of Polynomials; 10.4 Cyclotomic Polynomials and Wedderburn's Theorem; Chapter 11: Finiteness Conditions for Rings and Modules; 11.1 Wedderburn's Theorem; 11.2 The Wedderburn-Artin Theorem; Appendices; Appendix A Complex Numbers; Appendix B Matrix Algebra; Appendix C Zorn's Lemma; Appendix D Proof of the Recursion Theorem; Bibliography; Selected Answers; Index. 
520 |a Praise for the Third Edition". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."--Zentralblatt MATHThe Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begi. 
588 0 |a Print version record. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Algebra, Abstract. 
650 6 |a Algèbre abstraite. 
650 7 |a Algebra, Abstract  |2 fast 
776 0 8 |i Print version:  |a Nicholson, W. Keith.  |t Introduction to abstract algebra.  |b 4th ed.  |d Hoboken : Wiley, 2012  |z 9781118135358  |w (DLC) 2011031416  |w (OCoLC)746316050 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118311738/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a YBP Library Services  |b YANK  |n 7620519 
994 |a 92  |b IZTAP