Cargando…

Adaptive tests of significance using permutations of residuals with R and SAS /

"This book concerns adaptive tests of significance, which are statistical tests that use the data to modify the test procedures. The modification is used to reduce the influence of outliers. These adaptive tests are attractive because they are often more powerful than traditional tests, and the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: O'Gorman, Thomas W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley, 2012.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ma 4500
001 OR_ocn787849902
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 111020s2012 njua ob 001 0 eng d
010 |a  2011038049 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d CUS  |d OCLCO  |d YDXCP  |d OCLCQ  |d DG1  |d OCLCQ  |d OCLCF  |d DKDLA  |d OCLCQ  |d EBLCP  |d N$T  |d IDEBK  |d CDX  |d UMI  |d COO  |d DEBSZ  |d DEBBG  |d OCLCQ  |d AZK  |d LOA  |d DG1  |d MOR  |d LIP  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d GWDNB  |d NJR  |d OCLCO  |d U3W  |d OCLCQ  |d OCLCO  |d COCUF  |d UUM  |d STF  |d WRM  |d OCLCQ  |d CEF  |d ICG  |d INT  |d VT2  |d OCLCQ  |d OCLCO  |d WYU  |d OCLCQ  |d OCLCO  |d UAB  |d OCLCQ  |d DKC  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d VLY  |d UKCRE  |d OCLCO  |d OCLCQ 
016 7 |a 1063778271  |2 DE-101 
019 |a 781614588  |a 794619824  |a 812407629  |a 824761413  |a 852512168  |a 961623957  |a 962694201  |a 966102191  |a 988480752  |a 988481059  |a 992073308  |a 992845581  |a 1037715154  |a 1038665138  |a 1055351881  |a 1065695639  |a 1081211392  |a 1103251220  |a 1129340849  |a 1152988852  |a 1162407365 
020 |a 9781118218228  |q (electronic bk.) 
020 |a 1118218221  |q (electronic bk.) 
020 |a 9781118218259  |q (electronic bk.) 
020 |a 1118218256  |q (electronic bk.) 
020 |a 0470922257 
020 |a 9780470922255 
020 |a 9781280588945 
020 |a 1280588942 
020 |z 9780470922255 
020 |a 9786613618771 
020 |a 6613618772 
024 8 |a 9786613618771 
029 1 |a AU@  |b 000050138935 
029 1 |a AU@  |b 000050492683 
029 1 |a AU@  |b 000055808630 
029 1 |a CHBIS  |b 009914426 
029 1 |a CHNEW  |b 000617346 
029 1 |a CHNEW  |b 000939728 
029 1 |a CHVBK  |b 480200203 
029 1 |a DEBBG  |b BV041120764 
029 1 |a DEBBG  |b BV041906622 
029 1 |a DEBBG  |b BV043394490 
029 1 |a DEBBG  |b BV044159673 
029 1 |a DEBSZ  |b 371579554 
029 1 |a DEBSZ  |b 379325152 
029 1 |a DEBSZ  |b 383120039 
029 1 |a DEBSZ  |b 396756700 
029 1 |a DEBSZ  |b 431067910 
029 1 |a DEBSZ  |b 485019108 
029 1 |a GWDNB  |b 1063778271 
029 1 |a NZ1  |b 14794731 
029 1 |a NZ1  |b 15341006 
029 1 |a AU@  |b 000066260904 
029 1 |a AU@  |b 000066526274 
029 1 |a AU@  |b 000067099820 
035 |a (OCoLC)787849902  |z (OCoLC)781614588  |z (OCoLC)794619824  |z (OCoLC)812407629  |z (OCoLC)824761413  |z (OCoLC)852512168  |z (OCoLC)961623957  |z (OCoLC)962694201  |z (OCoLC)966102191  |z (OCoLC)988480752  |z (OCoLC)988481059  |z (OCoLC)992073308  |z (OCoLC)992845581  |z (OCoLC)1037715154  |z (OCoLC)1038665138  |z (OCoLC)1055351881  |z (OCoLC)1065695639  |z (OCoLC)1081211392  |z (OCoLC)1103251220  |z (OCoLC)1129340849  |z (OCoLC)1152988852  |z (OCoLC)1162407365 
037 |a 361877  |b MIL 
050 4 |a QA278.2  |b .O35 2012eb 
072 7 |a MAT  |x 029030  |2 bisacsh 
082 0 4 |a 519.5/36  |2 23 
084 |a MAT029030  |2 bisacsh 
049 |a UAMI 
100 1 |a O'Gorman, Thomas W. 
245 1 0 |a Adaptive tests of significance using permutations of residuals with R and SAS /  |c Thomas W. O'Gorman. 
260 |a Hoboken, N.J. :  |b Wiley,  |c 2012. 
300 |a 1 online resource (xvii, 345 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references and index. 
520 |a "This book concerns adaptive tests of significance, which are statistical tests that use the data to modify the test procedures. The modification is used to reduce the influence of outliers. These adaptive tests are attractive because they are often more powerful than traditional tests, and they are also quite practical since they can be performed quickly on a computer using R code or a SAS macro. This comprehensive book on adaptive tests can be used by students and researchers alike who are not familiar with adaptive methods. Chapter 1 provides a gentle introduction to the topic, and Chapter 2 presents a description of the basic tools that are used throughout the book. In Chapters 3, 4, and 5, the basic adaptive testing methods are developed, and Chapters 6 and 7 contain many applications of these tests. Chapters 8 and 9 concern adaptive multivariate tests with multivariate regression models, while the rest of the book concerns adaptive rank tests, adaptive confidence intervals, and adaptive correlations. The adaptive tests described in this book have the following properties: the level of significance is maintained at or near [alpha]; they are more powerful than the traditional test, sometimes much more powerful, if the error distribution is long-tailed or skewed; and there is little power loss compared to the traditional tests if the error distribution is normal. Additional topical coverage includes: smoothing and normalizing methods; two-sample adaptive tests; permutation tests with linear models; adaptive tests in linear models; application of adaptive tests; analysis of paired data; adaptive multivariate tests; analysis of repeated measures data; rank-based approaches to testing; adaptive confidence intervals; and adaptive correlation"--  |c Provided by publisher. 
505 0 |a Adaptive Tests of Significance Using Permutations of Residuals with R and SAS®; CONTENTS; Preface; 1 Introduction; 1.1 Why Use Adaptive Tests?; 1.2 A Brief History of Adaptive Tests; 1.2.1 Early Tests and Estimators; 1.2.2 Rank Tests; 1.2.3 The Weighted Least Squares Approach; 1.2.4 Recent Rank-Based Tests; 1.3 The Adaptive Test of Hogg, Fisher, and Randles; 1.3.1 Level of Significance of the HFR Test; 1.3.2 Comparison of Power of the HFR Test to the t Test; 1.4 Limitations of Rank-Based Tests; 1.5 The Adaptive Weighted Least Squares Approach; 1.5.1 Level of Significance. 
505 8 |a 1.5.2 Comparison of Power of the Adaptive WLS Test to the t Test and the HFR Test1.6 Development of the Adaptive WLS Test; 2 Smoothing Methods and Normalizing Transformations; 2.1 Traditional Estimators of the Median and the Interquartile Range; 2.2 Percentile Estimators that Use the Smooth Cumulative Distribution Function; 2.2.1 Smoothing the Cumulative Distribution Function; 2.2.2 Using the Smoothed c.d.f. to Compute Percentiles; 2.2.3 R Code for Smoothing the c.d.f.; 2.2.4 R Code for Finding Percentiles; 2.3 Estimating the Bandwidth. 
505 8 |a 2.3.1 An Estimator of Variability Based on Traditional Percentiles2.3.2 R Code for Finding the Bandwidth; 2.3.3 An Estimator of Variability Based on Percentiles from the Smoothed Distribution Function; 2.4 Normalizing Transformations; 2.4.1 Traditional Normalizing Methods; 2.4.2 Normalizing Data by Weighting; 2.5 The Weighting Algorithm; 2.5.1 An Example of the Weighing Procedure; 2.5.2 R Code for Weighting the Observations; 2.6 Computing the Bandwidth; 2.6.1 Error Distributions; 2.6.2 Measuring Errors in Adaptive Weighting; 2.6.3 Simulation Studies; 2.7 Examples of Transformed Data. 
505 8 |a Exercises3 A Two-Sample Adaptive Test; 3.1 A Two-Sample Model; 3.2 Computing the Adaptive Weights; 3.2.1 R Code for Computing the Weights; 3.3 The Test Statistics for Adaptive Tests; 3.3.1 R Code to Compute the Test Statistic; 3.4 Permutation Methods for Two-Sample Tests; 3.4.1 Permutation of Observations; 3.4.2 Permutation of Residuals; 3.4.3 R Code for Permutations; 3.5 An Example of a Two-Sample Test; 3.6 R Code for the Two-Sample Test; 3.6.1 R Code for Computing the Test Statistics; 3.6.2 R Code to Compute the Traditional F Test Statistic and p-Value. 
505 8 |a 3.6.3 An R Function that Computes the p-Value for the Adaptive Test3.6.4 R Code to Perform the Adaptive Test; 3.7 Level of Significance of the Adaptive Test; 3.8 Power of the Adaptive Test; 3.9 Sample Size Estimation; 3.10 A SAS Macro for the Adaptive Test; 3.11 Modifications for One-Tailed Tests; 3.12 Justification of the Weighting Method; 3.13 Comments on the Adaptive Two-sample Test; Exercises; 4 Permutation Tests with Linear Models; 4.1 Introduction; 4.2 Notation; 4.3 Permutations with Blocking; 4.4 Linear Models in Matrix Form; 4.5 Permutation Methods; 4.5.1 The Permute-Errors Method. 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
630 0 0 |a SAS (Computer file) 
630 0 7 |a SAS (Computer file)  |2 blmlsh 
630 0 7 |a SAS (Computer file)  |2 fast  |0 (OCoLC)fst01364029 
650 0 |a Regression analysis. 
650 0 |a Computer adaptive testing. 
650 0 |a R (Computer program language) 
650 2 |a Regression Analysis 
650 6 |a Analyse de régression. 
650 6 |a Tests adaptatifs par ordinateur. 
650 6 |a R (Langage de programmation) 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Regression Analysis.  |2 bisacsh 
650 7 |a Computer adaptive testing.  |2 fast  |0 (OCoLC)fst00872007 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
650 7 |a Regression analysis.  |2 fast  |0 (OCoLC)fst01432090 
776 0 8 |i Print version:  |a O'Gorman, Thomas W.  |t Adaptive tests of significance using permutations of residuals with R and SAS.  |d Hoboken, N.J. : Wiley, 2012  |w (DLC) 2011038049 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780470922255/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Coutts Information Services  |b COUT  |n 22302778 
938 |a EBL - Ebook Library  |b EBLB  |n EBL817905 
938 |a ebrary  |b EBRY  |n ebr10542585 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 361877 
938 |a YBP Library Services  |b YANK  |n 7292964 
938 |a YBP Library Services  |b YANK  |n 7392025 
994 |a 92  |b IZTAP