Cargando…

Mathematical statistics with resampling and R /

Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. This groundbreaking book shows how to apply modern resampling techniques to mathematical statistics. Extensively class-tested to ensure an accessibl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chihara, Laura, 1957-
Otros Autores: Hesterberg, Tim, 1959-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : J. Wiley & Sons, ©2011.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn786165387
003 OCoLC
005 20231017213018.0
006 m o d
007 cr unu||||||||
008 120419s2011 njua ob 001 0 eng d
010 |a  2011026144 
040 |a UMI  |b eng  |e pn  |c UMI  |d COO  |d C6I  |d YDXCP  |d OCLCQ  |d DEBSZ  |d IDEBK  |d E7B  |d N$T  |d OCLCQ  |d COCUF  |d PIFBY  |d OCLCQ  |d OCL  |d U3W  |d OCLCQ  |d STF  |d CEF  |d INT  |d VT2  |d OCLCQ  |d WYU  |d TKN  |d OCLCQ  |d UAB  |d AU@  |d UKAHL  |d HS0  |d UWK  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d TUHNV  |d OCL  |d OCLCO  |d OCLCQ 
015 |a GBB192344  |2 bnb 
016 7 |a 015861192  |2 Uk 
019 |a 892911526  |a 961514813  |a 962633326  |a 1055384376  |a 1063874200  |a 1081222830  |a 1103262237  |a 1109112142  |a 1110290415  |a 1116010801  |a 1129340457  |a 1152976468  |a 1162495612  |a 1192350978  |a 1228528910  |a 1240508155 
020 |a 1118029852 
020 |a 9781118029855 
020 |a 9781118625750 
020 |a 1118625757 
020 |a 1118518950 
020 |a 9781118518953 
020 |a 132207822X  |q (ebk.) 
020 |a 9781322078229  |q (ebk.) 
020 |z 9781118029855 
029 1 |a AU@  |b 000067099833 
029 1 |a CHNEW  |b 000688471 
029 1 |a CHNEW  |b 000688472 
029 1 |a DEBBG  |b BV040901122 
029 1 |a DEBSZ  |b 378283162 
029 1 |a DEBSZ  |b 381371565 
029 1 |a GBVCP  |b 737951958 
029 1 |a NLGGC  |b 382796497 
035 |a (OCoLC)786165387  |z (OCoLC)892911526  |z (OCoLC)961514813  |z (OCoLC)962633326  |z (OCoLC)1055384376  |z (OCoLC)1063874200  |z (OCoLC)1081222830  |z (OCoLC)1103262237  |z (OCoLC)1109112142  |z (OCoLC)1110290415  |z (OCoLC)1116010801  |z (OCoLC)1129340457  |z (OCoLC)1152976468  |z (OCoLC)1162495612  |z (OCoLC)1192350978  |z (OCoLC)1228528910  |z (OCoLC)1240508155 
037 |a CL0500000131  |b Safari Books Online 
050 4 |a QA278.8  |b .C45 2011 
072 7 |a SOC  |x 027000  |2 bisacsh 
082 0 4 |a 310  |2 23 
049 |a UAMI 
100 1 |a Chihara, Laura,  |d 1957- 
245 1 0 |a Mathematical statistics with resampling and R /  |c Laura Chihara, Tim Hesterberg. 
260 |a Hoboken, N.J. :  |b J. Wiley & Sons,  |c ©2011. 
300 |a 1 online resource (xiv, 418 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 407-412) and index. 
520 |a Resampling helps students understand the meaning of sampling distributions, sampling variability, P-values, hypothesis tests, and confidence intervals. This groundbreaking book shows how to apply modern resampling techniques to mathematical statistics. Extensively class-tested to ensure an accessible presentation, Mathematical Statistics with Resampling and R utilizes the powerful and flexible computer language R to underscore the significance and benefits of modern resampling techniques. 
520 8 |a The book begins by introducing permutation tests and bootstrap methods, motivating classical inference methods. Striking a balance between theory, computing, and applications, the authors explore additional topics such as. 
520 8 |a Calculation of sampling distributions. 
520 8 |a The Central Limit Theorem. 
520 8 |a Maximum likelihood estimation and properties of estimators. 
520 8 |a Confidence intervals and hypothesis tests. 
520 8 |a Throughout the book, case studies on diverse subjects such as flight delays, birth weights of babies, and telephone company repair times illustrate the relevance of the real-world applications of the discussed material. Key definitions and theorems of important probability distributions are collected at the end of the book, and a related website is also available, featuring additional material including data sets, R scripts, and helpful teaching hints. 
520 8 |a Mathematical Statistics with Resampling and R is an excellent book for courses on mathematical statistics at the upper-undergraduate and graduate levels. It also serves as a valuable reference for applied statisticians working in the areas of business, economics, biostatistics, and public health who utilize resampling methods in their everyday work. 
505 0 |a Cover; Half Title page; Title page; Copyright page; Preface; Acknowledgments; Chapter 1: Data and Case Studies; 1.1 Case Study: Flight Delays; 1.2 Case Study: Birth Weights of Babies; 1.3 Case Study: Verizon Repair Times; 1.4 Sampling; 1.5 Parameters and Statistics; 1.6 Case Study: General Social Survey; 1.7 Sample Surveys; 1.8 Case Study: Beer and Hot Wings; 1.9 Case Study: Black Spruce Seedlings; 1.10 Studies; 1.11 Exercises; Chapter 2: Exploratory Data Analysis; 2.1 Basic Plots; 2.2 Numeric Summaries; 2.3 Boxplots; 2.4 Quantiles and Normal Quantile Plots 
505 8 |a 2.5 Empirical Cumulative Distribution Functions2.6 Scatter Plots; 2.7 Skewness and Kurtosis; 2.8 Exercises; Chapter 3: Hypothesis Testing; 3.1 Introduction to Hypothesis Testing; 3.2 Hypotheses; 3.3 Permutation Tests; 3.4 Contingency Tables; 3.5 Chi-Square Test of Independence; 3.6 Test of Homogeneity; 3.7 Goodness-of-Fit: All Parameters Known; 3.8 Goodness-of-Fit: Some Parameters Estimated; 3.9 Exercises; Chapter 4: Sampling Distributions; 4.1 Sampling Distributions; 4.2 Calculating Sampling Distributions; 4.3 The Central Limit Theorem; 4.4 Exercises; Chapter 5: The Bootstrap 
505 8 |a 5.1 Introduction to the Bootstrap5.2 The Plug-in Principle; 5.3 Bootstrap Percentile Intervals; 5.4 Two Sample Bootstrap; 5.5 Other Statistics; 5.6 Bias; 5.7 Monte Carlo Sampling: The "Second Bootstrap Principle"; 5.8 Accuracy of Bootstrap Distributions; 5.9 How Many Bootstrap Samples are Needed?; 5.10 Exercises; Chapter 6: Estimation; 6.1 Maximum Likelihood Estimation; 6.2 Method of Moments; 6.3 Properties of Estimators; 6.4 Exercises; Chapter 7: Classical Inference: Confidence Intervals; 7.1 Confidence Intervals for Means; 7.2 Confidence Intervals in General 
505 8 |a 7.3 One-Sided Confidence Intervals7.4 Confidence Intervals for Proportions; 7.5 Bootstrap t Confidence Intervals; 7.6 Exercises; Chapter 8: Classical Inference: Hypothesis Testing; 8.1 Hypothesis Tests for Means and Proportions; 8.2 Type I and Type Ii Errors; 8.3 More on Testing; 8.4 Likelihood Ratio Tests; 8.5 Exercises; Chapter 9: Regression; 9.1 Covariance; 9.2 Correlation; 9.3 Least-Squares Regression; 9.4 The Simple Linear Model; 9.5 Resampling Correlation and Regression; 9.6 Logistic Regression; 9.7 Exercises; Chapter 10: Bayesian Methods; 10.1 Bayes'Theorem 
505 8 |a 10.2 Binomial Data, Discrete Prior Distributions10.3 Binomial Data, Continuous Prior Distributions; 10.4 Continuous Data; 10.5 Sequential Data; 10.6 Exercises; Chapter 11: Additional Topics; 11.1 Smoothed Bootstrap; 11.2 Parametric Bootstrap; 11.3 The Delta Method; 11.4 Stratified Sampling; 11.5 Computational Issues in Bayesian Analysis; 11.6 Monte Carlo Integration; 11.7 Importance Sampling; 11.8 Exercises; Appendix A: Review of Probability; A.1 Basic Probability; A.2 Mean and Variance; A.3 The Mean of A Sample of Random Variables; A.4 The Law of Averages; A.5 The Normal Distribution 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Resampling (Statistics) 
650 0 |a Statistics. 
650 0 |a R (Computer program language) 
650 6 |a Rééchantillonnage (Statistique) 
650 6 |a R (Langage de programmation) 
650 7 |a SOCIAL SCIENCE  |x Statistics.  |2 bisacsh 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
650 7 |a Resampling (Statistics)  |2 fast  |0 (OCoLC)fst01095115 
650 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01132103 
655 7 |a Statistics.  |2 fast  |0 (OCoLC)fst01423727 
655 7 |a Statistics.  |2 lcgft 
655 7 |a Statistiques.  |2 rvmgf 
700 1 |a Hesterberg, Tim,  |d 1959- 
776 0 8 |i Print version:  |a Chihara, Laura, 1957-  |t Mathematical statistics with resampling and R.  |d Hoboken, N.J. : Wiley, ©2011  |z 9781118029855  |w (DLC) 2011026144  |w (OCoLC)707248267 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118029855/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24486320 
938 |a Askews and Holts Library Services  |b ASKH  |n AH25496170 
938 |a ebrary  |b EBRY  |n ebr10915837 
938 |a EBSCOhost  |b EBSC  |n 835446 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29660218 
938 |a YBP Library Services  |b YANK  |n 9808300 
938 |a YBP Library Services  |b YANK  |n 12055246 
994 |a 92  |b IZTAP