Cargando…

Machine learning for hackers /

If you're an experienced programmer interested in crunching data, this book will get you started with machine learning--a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Conway, Drew
Otros Autores: White, John Myles
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Sebastopol, CA : O'Reilly, 2012.
Edición:1st ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Ia 4500
001 OR_ocn780425806
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 120319s2012 caua ob 001 0 eng d
010 |a  2012277057 
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d N$T  |d YDXCP  |d OCLCQ  |d GZM  |d CIT  |d XII  |d CUS  |d UMI  |d COO  |d DEBSZ  |d OCLCQ  |d TEFOD  |d OCLCQ  |d IDEBK  |d OCLCQ  |d FMG  |d CNSPO  |d E7B  |d TEFOD  |d OCLCQ  |d FEM  |d NRC  |d OCLCQ  |d OCLCF  |d BRL  |d CEF  |d MOQ  |d AU@  |d WYU  |d CASUM  |d OCLCO  |d UAB  |d STF  |d UKAHL  |d VT2  |d OCLCQ  |d OCLCA  |d CZL  |d DST  |d OCLCO  |d OCLCQ  |d OCL  |d OCLCO 
016 7 |a 015952116  |2 Uk 
019 |a 777270453  |a 796829460  |a 856992968  |a 861531139  |a 958349363  |a 968074361  |a 968989581  |a 1058129706  |a 1066424878  |a 1103269337  |a 1129376122  |a 1153025215  |a 1154966374  |a 1192337399  |a 1240518496  |a 1295593819  |a 1300657955  |a 1303378008 
020 |a 9781449330545  |q (electronic bk.) 
020 |a 1449330541  |q (electronic bk.) 
020 |a 9781449330538  |q (electronic bk.) 
020 |a 1449330533  |q (electronic bk.) 
020 |z 9781449303716 
020 |z 9781449330514 
020 |z 1449330517 
020 |z 1449303714 
020 |a 1306812607 
020 |a 9781306812603 
024 8 |a 99951783406 
029 1 |a AU@  |b 000050435219 
029 1 |a DEBBG  |b BV040901723 
029 1 |a DEBSZ  |b 378290886 
029 1 |a DEBSZ  |b 381377636 
029 1 |a DEBSZ  |b 397241178 
029 1 |a NZ1  |b 14538291 
029 1 |a AU@  |b 000062353332 
029 1 |a AU@  |b 000066231690 
035 |a (OCoLC)780425806  |z (OCoLC)777270453  |z (OCoLC)796829460  |z (OCoLC)856992968  |z (OCoLC)861531139  |z (OCoLC)958349363  |z (OCoLC)968074361  |z (OCoLC)968989581  |z (OCoLC)1058129706  |z (OCoLC)1066424878  |z (OCoLC)1103269337  |z (OCoLC)1129376122  |z (OCoLC)1153025215  |z (OCoLC)1154966374  |z (OCoLC)1192337399  |z (OCoLC)1240518496  |z (OCoLC)1295593819  |z (OCoLC)1300657955  |z (OCoLC)1303378008 
037 |a CL0500000149  |b Safari Books Online 
037 |a 1A3C3223-7F83-431A-9765-F853C6E67CFA  |b OverDrive, Inc.  |n http://www.overdrive.com 
050 4 |a Q336 
072 7 |a COM  |x 000000  |2 bisacsh 
082 0 4 |a 006 
049 |a UAMI 
100 1 |a Conway, Drew. 
245 1 0 |a Machine learning for hackers /  |c Drew Conway and John Myles White. 
250 |a 1st ed. 
260 |a Sebastopol, CA :  |b O'Reilly,  |c 2012. 
300 |a 1 online resource (xiii, 303 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rda 
504 |a Includes bibliographical references (pages 293-294) and index. 
505 0 |a Table of Contents; Preface; Machine Learning for Hackers; How This Book Is Organized; Conventions Used in This Book; Using Code Examples; Safari® Books Online; How to Contact Us; Acknowledgements; Chapter 1. Using R; R for Machine Learning; Downloading and Installing R; Windows; Mac OS X; Linux; IDEs and Text Editors; Loading and Installing R Packages; R Basics for Machine Learning; Loading libraries and the data; Converting date strings and dealing with malformed data; Organizing location data; Dealing with data outside our scope; Aggregating and organizing the data; Analyzing the data. 
505 8 |a Further Reading on RChapter 2. Data Exploration; Exploration versus Confirmation; What Is Data?; Inferring the Types of Columns in Your Data; Inferring Meaning; Numeric Summaries; Means, Medians, and Modes; Quantiles; Standard Deviations and Variances; Exploratory Data Visualization; Visualizing the Relationships Between Columns; Chapter 3. Classification: Spam Filtering; This or That: Binary Classification; Moving Gently into Conditional Probability; Writing Our First Bayesian Spam Classifier; Defining the Classifier and Testing It with Hard Ham. 
505 8 |a Testing the Classifier Against All Email TypesImproving the Results; Chapter 4. Ranking: Priority Inbox; How Do You Sort Something When You Don't Know the Order?; Ordering Email Messages by Priority; Priority Features of Email; Writing a Priority Inbox; Functions for Extracting the Feature Set; Creating a Weighting Scheme for Ranking; A log-weighting scheme; Weighting from Email Thread Activity; Training and Testing the Ranker; Chapter 5. Regression: Predicting Page Views; Introducing Regression; The Baseline Model; Regression Using Dummy Variables; Linear Regression in a Nutshell. 
505 8 |a Predicting Web TrafficDefining Correlation; Chapter 6. Regularization: Text Regression; Nonlinear Relationships Between Columns: Beyond Straight Lines; Introducing Polynomial Regression; Methods for Preventing Overfitting; Preventing Overfitting with Regularization; Text Regression; Logistic Regression to the Rescue; Chapter 7. Optimization: Breaking Codes; Introduction to Optimization; Ridge Regression; Code Breaking as Optimization; Chapter 8. PCA: Building a Market Index; Unsupervised Learning; Chapter 9. MDS: Visually Exploring US Senator Similarity; Clustering Based on Similarity. 
505 8 |a A Brief Introduction to Distance Metrics and Multidirectional ScalingHow Do US Senators Cluster?; Analyzing US Senator Roll Call Data (101st-111th Congresses); Exploring senator MDS clustering by Congress; Chapter 10. kNN: Recommendation Systems; The k-Nearest Neighbors Algorithm; R Package Installation Data; Chapter 11. Analyzing Social Graphs; Social Network Analysis; Thinking Graphically; Hacking Twitter Social Graph Data; Working with the Google SocialGraph API; Analyzing Twitter Networks; Local Community Structure; Visualizing the Clustered Twitter Network with Gephi. 
520 |a If you're an experienced programmer interested in crunching data, this book will get you started with machine learning--a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze s. 
588 0 |a Print version record. 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Computer algorithms. 
650 0 |a Electronic data processing  |x Automation. 
650 0 |a Programming languages (Electronic computers) 
650 0 |a Artificial intelligence. 
650 0 |a Computer graphics. 
650 1 2 |a Electronic Data Processing 
650 1 2 |a Programming Languages 
650 1 2 |a Social Networking 
650 1 2 |a Statistics. 
650 2 2 |a Artificial Intelligence 
650 2 2 |a Computer Graphics 
650 2 2 |a Software 
650 2 |a Algorithms 
650 6 |a Algorithmes. 
650 6 |a Informatique. 
650 6 |a Langages de programmation. 
650 6 |a Intelligence artificielle. 
650 6 |a Infographie. 
650 6 |a Logiciels. 
650 7 |a algorithms.  |2 aat 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a computer graphics.  |2 aat 
650 7 |a software.  |2 aat 
650 7 |a COMPUTERS  |x General.  |2 bisacsh 
650 7 |a Programming languages (Electronic computers)  |2 fast 
650 7 |a Computer graphics  |2 fast 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Computer algorithms  |2 fast 
700 1 |a White, John Myles. 
773 0 |t EBL 
776 0 8 |i Print version:  |a Conway, Drew.  |t Machine learning for hackers.  |b 1st ed.  |d Sebastopol, CA : O'Reilly, 2012  |z 9781449303716  |w (OCoLC)783384312 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781449330514/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26847714 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26847715 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL862166 
938 |a ebrary  |b EBRY  |n ebr10758759 
938 |a EBSCOhost  |b EBSC  |n 436647 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis28410993 
938 |a YBP Library Services  |b YANK  |n 11368648 
938 |a YBP Library Services  |b YANK  |n 7457975 
994 |a 92  |b IZTAP