|
|
|
|
LEADER |
00000cam a2200000Ia 4500 |
001 |
OR_ocn780425806 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
120319s2012 caua ob 001 0 eng d |
010 |
|
|
|a 2012277057
|
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d OCLCQ
|d N$T
|d YDXCP
|d OCLCQ
|d GZM
|d CIT
|d XII
|d CUS
|d UMI
|d COO
|d DEBSZ
|d OCLCQ
|d TEFOD
|d OCLCQ
|d IDEBK
|d OCLCQ
|d FMG
|d CNSPO
|d E7B
|d TEFOD
|d OCLCQ
|d FEM
|d NRC
|d OCLCQ
|d OCLCF
|d BRL
|d CEF
|d MOQ
|d AU@
|d WYU
|d CASUM
|d OCLCO
|d UAB
|d STF
|d UKAHL
|d VT2
|d OCLCQ
|d OCLCA
|d CZL
|d DST
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCO
|
016 |
7 |
|
|a 015952116
|2 Uk
|
019 |
|
|
|a 777270453
|a 796829460
|a 856992968
|a 861531139
|a 958349363
|a 968074361
|a 968989581
|a 1058129706
|a 1066424878
|a 1103269337
|a 1129376122
|a 1153025215
|a 1154966374
|a 1192337399
|a 1240518496
|a 1295593819
|a 1300657955
|a 1303378008
|
020 |
|
|
|a 9781449330545
|q (electronic bk.)
|
020 |
|
|
|a 1449330541
|q (electronic bk.)
|
020 |
|
|
|a 9781449330538
|q (electronic bk.)
|
020 |
|
|
|a 1449330533
|q (electronic bk.)
|
020 |
|
|
|z 9781449303716
|
020 |
|
|
|z 9781449330514
|
020 |
|
|
|z 1449330517
|
020 |
|
|
|z 1449303714
|
020 |
|
|
|a 1306812607
|
020 |
|
|
|a 9781306812603
|
024 |
8 |
|
|a 99951783406
|
029 |
1 |
|
|a AU@
|b 000050435219
|
029 |
1 |
|
|a DEBBG
|b BV040901723
|
029 |
1 |
|
|a DEBSZ
|b 378290886
|
029 |
1 |
|
|a DEBSZ
|b 381377636
|
029 |
1 |
|
|a DEBSZ
|b 397241178
|
029 |
1 |
|
|a NZ1
|b 14538291
|
029 |
1 |
|
|a AU@
|b 000062353332
|
029 |
1 |
|
|a AU@
|b 000066231690
|
035 |
|
|
|a (OCoLC)780425806
|z (OCoLC)777270453
|z (OCoLC)796829460
|z (OCoLC)856992968
|z (OCoLC)861531139
|z (OCoLC)958349363
|z (OCoLC)968074361
|z (OCoLC)968989581
|z (OCoLC)1058129706
|z (OCoLC)1066424878
|z (OCoLC)1103269337
|z (OCoLC)1129376122
|z (OCoLC)1153025215
|z (OCoLC)1154966374
|z (OCoLC)1192337399
|z (OCoLC)1240518496
|z (OCoLC)1295593819
|z (OCoLC)1300657955
|z (OCoLC)1303378008
|
037 |
|
|
|a CL0500000149
|b Safari Books Online
|
037 |
|
|
|a 1A3C3223-7F83-431A-9765-F853C6E67CFA
|b OverDrive, Inc.
|n http://www.overdrive.com
|
050 |
|
4 |
|a Q336
|
072 |
|
7 |
|a COM
|x 000000
|2 bisacsh
|
082 |
0 |
4 |
|a 006
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Conway, Drew.
|
245 |
1 |
0 |
|a Machine learning for hackers /
|c Drew Conway and John Myles White.
|
250 |
|
|
|a 1st ed.
|
260 |
|
|
|a Sebastopol, CA :
|b O'Reilly,
|c 2012.
|
300 |
|
|
|a 1 online resource (xiii, 303 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|2 rda
|
504 |
|
|
|a Includes bibliographical references (pages 293-294) and index.
|
505 |
0 |
|
|a Table of Contents; Preface; Machine Learning for Hackers; How This Book Is Organized; Conventions Used in This Book; Using Code Examples; Safari® Books Online; How to Contact Us; Acknowledgements; Chapter 1. Using R; R for Machine Learning; Downloading and Installing R; Windows; Mac OS X; Linux; IDEs and Text Editors; Loading and Installing R Packages; R Basics for Machine Learning; Loading libraries and the data; Converting date strings and dealing with malformed data; Organizing location data; Dealing with data outside our scope; Aggregating and organizing the data; Analyzing the data.
|
505 |
8 |
|
|a Further Reading on RChapter 2. Data Exploration; Exploration versus Confirmation; What Is Data?; Inferring the Types of Columns in Your Data; Inferring Meaning; Numeric Summaries; Means, Medians, and Modes; Quantiles; Standard Deviations and Variances; Exploratory Data Visualization; Visualizing the Relationships Between Columns; Chapter 3. Classification: Spam Filtering; This or That: Binary Classification; Moving Gently into Conditional Probability; Writing Our First Bayesian Spam Classifier; Defining the Classifier and Testing It with Hard Ham.
|
505 |
8 |
|
|a Testing the Classifier Against All Email TypesImproving the Results; Chapter 4. Ranking: Priority Inbox; How Do You Sort Something When You Don't Know the Order?; Ordering Email Messages by Priority; Priority Features of Email; Writing a Priority Inbox; Functions for Extracting the Feature Set; Creating a Weighting Scheme for Ranking; A log-weighting scheme; Weighting from Email Thread Activity; Training and Testing the Ranker; Chapter 5. Regression: Predicting Page Views; Introducing Regression; The Baseline Model; Regression Using Dummy Variables; Linear Regression in a Nutshell.
|
505 |
8 |
|
|a Predicting Web TrafficDefining Correlation; Chapter 6. Regularization: Text Regression; Nonlinear Relationships Between Columns: Beyond Straight Lines; Introducing Polynomial Regression; Methods for Preventing Overfitting; Preventing Overfitting with Regularization; Text Regression; Logistic Regression to the Rescue; Chapter 7. Optimization: Breaking Codes; Introduction to Optimization; Ridge Regression; Code Breaking as Optimization; Chapter 8. PCA: Building a Market Index; Unsupervised Learning; Chapter 9. MDS: Visually Exploring US Senator Similarity; Clustering Based on Similarity.
|
505 |
8 |
|
|a A Brief Introduction to Distance Metrics and Multidirectional ScalingHow Do US Senators Cluster?; Analyzing US Senator Roll Call Data (101st-111th Congresses); Exploring senator MDS clustering by Congress; Chapter 10. kNN: Recommendation Systems; The k-Nearest Neighbors Algorithm; R Package Installation Data; Chapter 11. Analyzing Social Graphs; Social Network Analysis; Thinking Graphically; Hacking Twitter Social Graph Data; Working with the Google SocialGraph API; Analyzing Twitter Networks; Local Community Structure; Visualizing the Clustered Twitter Network with Gephi.
|
520 |
|
|
|a If you're an experienced programmer interested in crunching data, this book will get you started with machine learning--a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you'll learn how to analyze s.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Computer algorithms.
|
650 |
|
0 |
|a Electronic data processing
|x Automation.
|
650 |
|
0 |
|a Programming languages (Electronic computers)
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Computer graphics.
|
650 |
1 |
2 |
|a Electronic Data Processing
|
650 |
1 |
2 |
|a Programming Languages
|
650 |
1 |
2 |
|a Social Networking
|
650 |
1 |
2 |
|a Statistics.
|
650 |
2 |
2 |
|a Artificial Intelligence
|
650 |
2 |
2 |
|a Computer Graphics
|
650 |
2 |
2 |
|a Software
|
650 |
|
2 |
|a Algorithms
|
650 |
|
6 |
|a Algorithmes.
|
650 |
|
6 |
|a Informatique.
|
650 |
|
6 |
|a Langages de programmation.
|
650 |
|
6 |
|a Intelligence artificielle.
|
650 |
|
6 |
|a Infographie.
|
650 |
|
6 |
|a Logiciels.
|
650 |
|
7 |
|a algorithms.
|2 aat
|
650 |
|
7 |
|a artificial intelligence.
|2 aat
|
650 |
|
7 |
|a computer graphics.
|2 aat
|
650 |
|
7 |
|a software.
|2 aat
|
650 |
|
7 |
|a COMPUTERS
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Programming languages (Electronic computers)
|2 fast
|
650 |
|
7 |
|a Computer graphics
|2 fast
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|
650 |
|
7 |
|a Computer algorithms
|2 fast
|
700 |
1 |
|
|a White, John Myles.
|
773 |
0 |
|
|t EBL
|
776 |
0 |
8 |
|i Print version:
|a Conway, Drew.
|t Machine learning for hackers.
|b 1st ed.
|d Sebastopol, CA : O'Reilly, 2012
|z 9781449303716
|w (OCoLC)783384312
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781449330514/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26847714
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26847715
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL862166
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10758759
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 436647
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis28410993
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11368648
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7457975
|
994 |
|
|
|a 92
|b IZTAP
|