Cargando…

Bayesian statistics : an introduction /

"--Presents extensive examples throughout the book to complement the theory presented. Includes significant new material on recent techniques such as variational methods, importance sampling, approximate computation and reversible jump MCMC"--

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lee, Peter M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex ; Hoboken, N.J. : Wiley, 2012.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Note continued: 7.3. Informative stopping rules
  • 7.3.1. An example on capture and recapture of fish
  • 7.3.2. Choice of prior and derivation of posterior
  • 7.3.3. The maximum likelihood estimator
  • 7.3.4. Numerical example
  • 7.4. The likelihood principle and reference priors
  • 7.4.1. The case of Bernoulli trials and its general implications
  • 7.4.2. Conclusion
  • 7.5. Bayesian decision theory
  • 7.5.1. The elements of game theory
  • 7.5.2. Point estimators resulting from quadratic loss
  • 7.5.3. Particular cases of quadratic loss
  • 7.5.4. Weighted quadratic loss
  • 7.5.5. Absolute error loss
  • 7.5.6. Zero-one loss
  • 7.5.7. General discussion of point estimation
  • 7.6. Bayes linear methods
  • 7.6.1. Methodology
  • 7.6.2. Some simple examples
  • 7.6.3. Extensions
  • 7.7. Decision theory and hypothesis testing
  • 7.7.1. Relationship between decision theory and classical hypothesis testing
  • 7.7.2.Composite hypotheses
  • 7.8. Empirical Bayes methods
  • 7.8.1. Von Mises' example
  • 7.8.2. The Poisson case
  • 7.9. Exercises on Chapter 7
  • 8. Hierarchical models
  • 8.1. The idea of a hierarchical model
  • 8.1.1. Definition
  • 8.1.2. Examples
  • 8.1.3. Objectives of a hierarchical analysis
  • 8.1.4. More on empirical Bayes methods
  • 8.2. The hierarchical normal model
  • 8.2.1. The model
  • 8.2.2. The Bayesian analysis for known overall mean
  • 8.2.3. The empirical Bayes approach
  • 8.3. The baseball example
  • 8.4. The Stein estimator
  • 8.4.1. Evaluation of the risk of the James-Stein estimator
  • 8.5. Bayesian analysis for an unknown overall mean
  • 8.5.1. Derivation of the posterior
  • 8.6. The general linear model revisited
  • 8.6.1. An informative prior for the general linear model
  • 8.6.2. Ridge regression
  • 8.6.3.A further stage to the general linear model
  • 8.6.4. The one way model
  • 8.6.5. Posterior variances of the estimators
  • 8.7. Exercises on Chapter 8
  • 9. The Gibbs sampler and other numerical methods
  • 9.1. Introduction to numerical methods
  • 9.1.1. Monte Carlo methods
  • 9.1.2. Markov chains
  • 9.2. The EM algorithm
  • 9.2.1. The idea of the EM algorithm
  • 9.2.2. Why the EM algorithm works
  • 9.2.3. Semi-conjugate prior with a normal likelihood
  • 9.2.4. The EM algorithm for the hierarchical normal model
  • 9.2.5.A particular case of the hierarchical normal model
  • 9.3. Data augmentation by Monte Carlo
  • 9.3.1. The genetic linkage example revisited
  • 9.3.2. Use of R
  • 9.3.3. The genetic linkage example in R
  • 9.3.4. Other possible uses for data augmentation
  • 9.4. The Gibbs sampler
  • 9.4.1. Chained data augmentation
  • 9.4.2. An example with observed data
  • 9.4.3. More on the semi-conjugate prior with a normal likelihood
  • 9.4.4. The Gibbs sampler as an extension of chained data augmentation
  • 9.4.5. An application to change-point analysis
  • 9.4.6. Other uses of the Gibbs sampler
  • 9.4.7. More about convergence
  • 9.5. Rejection sampling
  • 9.5.1. Description
  • 9.5.2. Example
  • 9.5.3. Rejection sampling for log-concave distributions
  • 9.5.4.A practical example
  • 9.6. The Metropolis-Hastings algorithm
  • 9.6.1. Finding an invariant distribution
  • 9.6.2. The Metropolis-Hastings algorithm
  • 9.6.3. Choice of a candidate density
  • 9.6.4. Example
  • 9.6.5. More realistic examples
  • 9.6.6. Gibbs as a special case of Metropolis-Hastings
  • 9.6.7. Metropolis within Gibbs
  • 9.7. Introduction to WinBUGS and OpenBUGS
  • 9.7.1. Information about WinBUGS and OpenBUGS
  • 9.7.2. Distributions in WinBUGS and OpenBUGS
  • 9.7.3.A simple example using WinBUGS
  • 9.7.4. The pump failure example revisited
  • 9.7.5. DoodleBUGS
  • 9.7.6.coda
  • 9.7.7.R2WinBUGS and R2OpenBUGS
  • 9.8. Generalized linear models
  • 9.8.1. Logistic regression
  • 9.8.2.A general framework
  • 9.9. Exercises on Chapter 9
  • 10. Some approximate methods
  • 10.1. Bayesian importance sampling
  • 10.1.1. Importance sampling to find HDRs
  • 10.1.2. Sampling importance re-sampling
  • 10.1.3. Multidimensional applications
  • 10.2. Variational Bayesian methods: simple case
  • 10.2.1. Independent parameters
  • 10.2.2. Application to the normal distribution
  • 10.2.3. Updating the mean
  • 10.2.4. Updating the variance
  • 10.2.5. Iteration
  • 10.2.6. Numerical example
  • 10.3. Variational Bayesian methods: general case
  • 10.3.1.A mixture of multivariate normals
  • 10.4. ABC: Approximate Bayesian Computation
  • 10.4.1. The ABC rejection algorithm
  • 10.4.2. The genetic linkage example
  • 10.4.3. The ABC Markov Chain Monte Carlo algorithm
  • 10.4.4. The ABC Sequential Monte Carlo algorithm
  • 10.4.5. The ABC local linear regression algorithm
  • 10.4.6. Other variants of ABC
  • 10.5. Reversible jump Markov chain Monte Carlo
  • 10.5.1. RJMCMC algorithm
  • 10.6. Exercises on Chapter 10
  • Appendix A Common statistical distributions
  • A.1. Normal distribution
  • A.2. Chi-squared distribution
  • A.3. Normal approximation to chi-squared
  • A.4. Gamma distribution
  • A.5. Inverse chi-squared distribution
  • A.6. Inverse chi distribution
  • A.7. Log chi-squared distribution
  • A.8. Student's t distribution
  • A.9. Normal/chi-squared distribution
  • A.10. Beta distribution
  • A.11. Binomial distribution
  • A.12. Poisson distribution
  • A.13. Negative binomial distribution
  • A.14. Hypergeometric distribution
  • A.15. Uniform distribution
  • A.16. Pareto distribution
  • A.17. Circular normal distribution
  • A.18. Behrens' distribution
  • A.19. Snedecor's F distribution
  • A.20. Fisher's z distribution
  • A.21. Cauchy distribution
  • A.22. The probability that one beta variable is greater than another
  • A.23. Bivariate normal distribution
  • A.24. Multivariate normal distribution
  • A.25. Distribution of the correlation coefficient
  • Appendix B Tables
  • B.1. Percentage points of the Behrens-Fisher distribution
  • B.2. Highest density regions for the chi-squared distribution
  • B.3. HDRs for the inverse chi-squared distribution
  • B.4. Chi-squared corresponding to HDRs for log chi-squared
  • B.5. Values of F corresponding to HDRs for log F
  • Appendix C R programs
  • Appendix D Further reading
  • D.1. Robustness
  • D.2. Nonparametric methods
  • D.3. Multivariate estimation
  • D.4. Time series and forecasting
  • D.5. Sequential methods
  • D.6. Numerical methods
  • D.7. Bayesian networks
  • D.8. General reading.