Cargando…

Bayesian statistics : an introduction /

"--Presents extensive examples throughout the book to complement the theory presented. Includes significant new material on recent techniques such as variational methods, importance sampling, approximate computation and reversible jump MCMC"--

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lee, Peter M.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex ; Hoboken, N.J. : Wiley, 2012.
Edición:4th ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn778857701
003 OCoLC
005 20231017213018.0
006 m o d
007 cr un|---uuuuu
008 120229s2012 nju ob 001 0 eng
010 |a  2012008714 
040 |a DLC  |b eng  |e pn  |c DLC  |d YDX  |d N$T  |d E7B  |d YDXCP  |d UKMGB  |d DEBSZ  |d CDX  |d COO  |d UPM  |d UMI  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d MOR  |d PIFAG  |d VGM  |d ESU  |d OCLCQ  |d NJR  |d BUF  |d OCLCQ  |d UUM  |d WRM  |d COCUF  |d CEF  |d NRAMU  |d VT2  |d AZK  |d ZEM  |d OCLCQ  |d WYU  |d UAB  |d AU@  |d MM9  |d OCLCQ  |d OCLCO  |d OCLCQ 
016 7 |a 016099008  |2 Uk 
019 |a 848895177  |a 961414420  |a 961825262  |a 1170722408  |a 1170993179  |a 1173484527 
020 |a 9781118359778  |q (ePub) 
020 |a 1118359771  |q (ePub) 
020 |a 9781118359754  |q (Adobe PDF) 
020 |a 1118359755  |q (Adobe PDF) 
020 |a 9781118359761  |q (MobiPocket) 
020 |a 1118359763  |q (MobiPocket) 
020 |a 1118332571 
020 |a 9781118332573 
020 |a 9781280775765  |q (MyiLibrary) 
020 |a 1280775769  |q (MyiLibrary) 
020 |z 9781118166406  |q (hardback) 
029 1 |a AU@  |b 000048713111 
029 1 |a AU@  |b 000052007811 
029 1 |a CHNEW  |b 000721602 
029 1 |a DEBBG  |b BV041430781 
029 1 |a DEBSZ  |b 372597319 
029 1 |a DEBSZ  |b 398265801 
029 1 |a NLGGC  |b 34362642X 
029 1 |a NZ1  |b 15317509 
029 1 |a AU@  |b 000069138013 
035 |a (OCoLC)778857701  |z (OCoLC)848895177  |z (OCoLC)961414420  |z (OCoLC)961825262  |z (OCoLC)1170722408  |z (OCoLC)1170993179  |z (OCoLC)1173484527 
037 |a CL0500000223  |b Safari Books Online 
042 |a pcc 
050 0 0 |a QA279.5 
072 7 |a MAT  |x 029010  |2 bisacsh 
082 0 0 |a 519.5/42  |2 23 
084 |a MAT029010  |2 bisacsh 
049 |a UAMI 
100 1 |a Lee, Peter M. 
245 1 0 |a Bayesian statistics :  |b an introduction /  |c Peter M. Lee. 
250 |a 4th ed. 
260 |a Chichester, West Sussex ;  |a Hoboken, N.J. :  |b Wiley,  |c 2012. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
380 |a Bibliography 
520 |a "--Presents extensive examples throughout the book to complement the theory presented. Includes significant new material on recent techniques such as variational methods, importance sampling, approximate computation and reversible jump MCMC"--  |c Provided by publisher. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record and CIP data provided by publisher. 
505 0 |a Note continued: 7.3. Informative stopping rules -- 7.3.1. An example on capture and recapture of fish -- 7.3.2. Choice of prior and derivation of posterior -- 7.3.3. The maximum likelihood estimator -- 7.3.4. Numerical example -- 7.4. The likelihood principle and reference priors -- 7.4.1. The case of Bernoulli trials and its general implications -- 7.4.2. Conclusion -- 7.5. Bayesian decision theory -- 7.5.1. The elements of game theory -- 7.5.2. Point estimators resulting from quadratic loss -- 7.5.3. Particular cases of quadratic loss -- 7.5.4. Weighted quadratic loss -- 7.5.5. Absolute error loss -- 7.5.6. Zero-one loss -- 7.5.7. General discussion of point estimation -- 7.6. Bayes linear methods -- 7.6.1. Methodology -- 7.6.2. Some simple examples -- 7.6.3. Extensions -- 7.7. Decision theory and hypothesis testing -- 7.7.1. Relationship between decision theory and classical hypothesis testing -- 7.7.2.Composite hypotheses -- 7.8. Empirical Bayes methods -- 7.8.1. Von Mises' example -- 7.8.2. The Poisson case -- 7.9. Exercises on Chapter 7 -- 8. Hierarchical models -- 8.1. The idea of a hierarchical model -- 8.1.1. Definition -- 8.1.2. Examples -- 8.1.3. Objectives of a hierarchical analysis -- 8.1.4. More on empirical Bayes methods -- 8.2. The hierarchical normal model -- 8.2.1. The model -- 8.2.2. The Bayesian analysis for known overall mean -- 8.2.3. The empirical Bayes approach -- 8.3. The baseball example -- 8.4. The Stein estimator -- 8.4.1. Evaluation of the risk of the James-Stein estimator -- 8.5. Bayesian analysis for an unknown overall mean -- 8.5.1. Derivation of the posterior -- 8.6. The general linear model revisited -- 8.6.1. An informative prior for the general linear model -- 8.6.2. Ridge regression -- 8.6.3.A further stage to the general linear model -- 8.6.4. The one way model -- 8.6.5. Posterior variances of the estimators -- 8.7. Exercises on Chapter 8 -- 9. The Gibbs sampler and other numerical methods -- 9.1. Introduction to numerical methods -- 9.1.1. Monte Carlo methods -- 9.1.2. Markov chains -- 9.2. The EM algorithm -- 9.2.1. The idea of the EM algorithm -- 9.2.2. Why the EM algorithm works -- 9.2.3. Semi-conjugate prior with a normal likelihood -- 9.2.4. The EM algorithm for the hierarchical normal model -- 9.2.5.A particular case of the hierarchical normal model -- 9.3. Data augmentation by Monte Carlo -- 9.3.1. The genetic linkage example revisited -- 9.3.2. Use of R -- 9.3.3. The genetic linkage example in R -- 9.3.4. Other possible uses for data augmentation -- 9.4. The Gibbs sampler -- 9.4.1. Chained data augmentation -- 9.4.2. An example with observed data -- 9.4.3. More on the semi-conjugate prior with a normal likelihood -- 9.4.4. The Gibbs sampler as an extension of chained data augmentation -- 9.4.5. An application to change-point analysis -- 9.4.6. Other uses of the Gibbs sampler -- 9.4.7. More about convergence -- 9.5. Rejection sampling -- 9.5.1. Description -- 9.5.2. Example -- 9.5.3. Rejection sampling for log-concave distributions -- 9.5.4.A practical example -- 9.6. The Metropolis-Hastings algorithm -- 9.6.1. Finding an invariant distribution -- 9.6.2. The Metropolis-Hastings algorithm -- 9.6.3. Choice of a candidate density -- 9.6.4. Example -- 9.6.5. More realistic examples -- 9.6.6. Gibbs as a special case of Metropolis-Hastings -- 9.6.7. Metropolis within Gibbs -- 9.7. Introduction to WinBUGS and OpenBUGS -- 9.7.1. Information about WinBUGS and OpenBUGS -- 9.7.2. Distributions in WinBUGS and OpenBUGS -- 9.7.3.A simple example using WinBUGS -- 9.7.4. The pump failure example revisited -- 9.7.5. DoodleBUGS -- 9.7.6.coda -- 9.7.7.R2WinBUGS and R2OpenBUGS -- 9.8. Generalized linear models -- 9.8.1. Logistic regression -- 9.8.2.A general framework -- 9.9. Exercises on Chapter 9 -- 10. Some approximate methods -- 10.1. Bayesian importance sampling -- 10.1.1. Importance sampling to find HDRs -- 10.1.2. Sampling importance re-sampling -- 10.1.3. Multidimensional applications -- 10.2. Variational Bayesian methods: simple case -- 10.2.1. Independent parameters -- 10.2.2. Application to the normal distribution -- 10.2.3. Updating the mean -- 10.2.4. Updating the variance -- 10.2.5. Iteration -- 10.2.6. Numerical example -- 10.3. Variational Bayesian methods: general case -- 10.3.1.A mixture of multivariate normals -- 10.4. ABC: Approximate Bayesian Computation -- 10.4.1. The ABC rejection algorithm -- 10.4.2. The genetic linkage example -- 10.4.3. The ABC Markov Chain Monte Carlo algorithm -- 10.4.4. The ABC Sequential Monte Carlo algorithm -- 10.4.5. The ABC local linear regression algorithm -- 10.4.6. Other variants of ABC -- 10.5. Reversible jump Markov chain Monte Carlo -- 10.5.1. RJMCMC algorithm -- 10.6. Exercises on Chapter 10 -- Appendix A Common statistical distributions -- A.1. Normal distribution -- A.2. Chi-squared distribution -- A.3. Normal approximation to chi-squared -- A.4. Gamma distribution -- A.5. Inverse chi-squared distribution -- A.6. Inverse chi distribution -- A.7. Log chi-squared distribution -- A.8. Student's t distribution -- A.9. Normal/chi-squared distribution -- A.10. Beta distribution -- A.11. Binomial distribution -- A.12. Poisson distribution -- A.13. Negative binomial distribution -- A.14. Hypergeometric distribution -- A.15. Uniform distribution -- A.16. Pareto distribution -- A.17. Circular normal distribution -- A.18. Behrens' distribution -- A.19. Snedecor's F distribution -- A.20. Fisher's z distribution -- A.21. Cauchy distribution -- A.22. The probability that one beta variable is greater than another -- A.23. Bivariate normal distribution -- A.24. Multivariate normal distribution -- A.25. Distribution of the correlation coefficient -- Appendix B Tables -- B.1. Percentage points of the Behrens-Fisher distribution -- B.2. Highest density regions for the chi-squared distribution -- B.3. HDRs for the inverse chi-squared distribution -- B.4. Chi-squared corresponding to HDRs for log chi-squared -- B.5. Values of F corresponding to HDRs for log F -- Appendix C R programs -- Appendix D Further reading -- D.1. Robustness -- D.2. Nonparametric methods -- D.3. Multivariate estimation -- D.4. Time series and forecasting -- D.5. Sequential methods -- D.6. Numerical methods -- D.7. Bayesian networks -- D.8. General reading. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Bayesian statistical decision theory. 
650 6 |a Théorie de la décision bayésienne. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x Bayesian Analysis.  |2 bisacsh 
650 7 |a Bayesian statistical decision theory.  |2 fast  |0 (OCoLC)fst00829019 
776 0 8 |i Print version:  |a Lee, Peter M.  |t Bayesian statistics.  |b 4th ed.  |d Chichester, West Sussex ; Hoboken, N.J. :, 2012  |z 9781118166406  |w (DLC) 2012007007 
856 4 0 |u https://learning.oreilly.com/library/view/~/9781118359778/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Coutts Information Services  |b COUT  |n 23991099 
938 |a ebrary  |b EBRY  |n ebr10570748 
938 |a EBSCOhost  |b EBSC  |n 463079 
938 |a YBP Library Services  |b YANK  |n 8855527 
994 |a 92  |b IZTAP