Cargando…

Liquid crystals beyond displays : chemistry, physics, and applications /

"The responsive nature and diversity of liquid crystals provide tremendous opportunities as well as challenges for insights in fundamental science, and opens the door to various applications. Most modern electronic displays are liquid crystal-based, but R & D is moving rapidly beyond into s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Li, Quan, 1965- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, New Jersey : John Wiley & Sons, [2012]
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • 3.4.1.1 Magnetic Anisotropy
  • 3.4.1.2 Intermolecular Magnetic Interactions
  • 3.4.1.3 Spin Crossover
  • 3.4.1.4 SMM
  • 3.4.1.5 Ferroelectricity
  • 3.4.2 f-Block Metal Complexes
  • 3.4.2.1 Magnetic Anisotropy
  • 3.4.2.2 Luminescence
  • 3.4.2.3 SMM
  • 3.5 ALL-ORGANIC RADICAL LCs
  • 3.5.1 First-Generation of Rod-Like All-Organic Radical LCs
  • 3.5.2 Discotic All-Organic Radical LCs
  • 3.5.3 Second-Generation of Rod-Like All-Organic Radical LCs
  • 3.5.3.1 Molecular Design and Synthesis
  • 3.5.3.2 Characterization of LC Phases
  • 3.5.3.3 Magnetic Properties
  • 3.5.3.4 Ferroelectricity
  • 3.6 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 4. Ferroelectric Liquid Crystals for Nonlinear Optical Applications
  • 4.1 INTRODUCTION
  • 4.1.1 Overview of Nonlinear Optical Materials (NLO) and Electro-Optic (EO) Materials
  • 4.1.2 Scope of This Chapter
  • 4.2 FUNDAMENTALS
  • 4.2.1 Ferroelectricity in LCs
  • 4.2.2 Microscopic to Macroscopic Nonlinearity
  • 4.2.3 SHG and Pockels Effect in LCs
  • 4.2.3.1 SHG Measurements
  • 4.2.3.2 Pockels Effect Measurement
  • 4.3 NLO AND EO LC MATERIALS
  • 4.3.1 Rod-Shaped NLO LCs
  • 4.3.1.1 LC Monomers
  • 4.3.1.2 LC Polymers
  • 4.3.2 H-Shaped Ferroelectric Dimesogens
  • 4.3.3 BC LCs
  • 4.3.3.1 Introduction
  • 4.3.3.2 SmCP Phases
  • 4.3.3.3 Qualitative Aspects of NLO Properties of BC SmCP Phases
  • 4.3.3.4 The Second-Order Susceptibility and EO Tensors
  • 4.3.3.5 SHG and EO Properties on Presently Known BC LCs
  • 4.3.3.6 Limits of the SHG and EO Responses in BC LCs
  • 4.3.4 Miscellaneous LC NLO Materials
  • 4.4 CONCLUSIONS AND FUTURE PROSPECTS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 5. Photo-Stimulated Phase Transformations in Liquid Crystals and Their Non-Display Applications
  • 5.1 INTRODUCTION
  • 5.2 SURVEY OF PHOTOINDUCED PHASE TRANSFORMATION IN LIQUID CRYSTALS
  • 5.2.1 Photoisomerization
  • 5.2.2 PIPT and Related Phenomena.
  • 7.2.2 The First Zone: Formation of the Taylor Cone
  • 7.2.3 The Second Zone: Jet Formation or Electrospray
  • 7.2.4 The Third Zone: Bending Instabilities and Fiber Stretching
  • 7.2.5 The Fourth and Final Zone: Fiber Collection
  • 7.2.6 Coaxial Electrospinning
  • 7.3 ELECTROSPINNING OF LIQUID CRYSTAL POLYMERS
  • 7.4 LOW MOLAR MASS LIQUID CRYSTALS INSIDE ELECTROSPUN FIBERS
  • 7.4.1 Non-Coaxial Electrospinning of Liquid Crystal Core Composite Fibers
  • 7.4.2 Coaxial Electrospinning of Fibers with Solvent-Free Liquid Crystal Core Fluid: Practical Requirements
  • 7.4.3 Sheath Morphology of Coaxially Spun Liquid Crystal Core Fibers
  • 7.4.4 How Does the Liquid Crystal Align inside the Fiber?
  • 7.4.5 Phase Sequence and Phase Transitions of Liquid Crystals Inside Electrospun Fibers
  • 7.4.6 The Optical Properties and Phase Behavior of Cholesteric and Blue Phases Inside Electrospun Fibers
  • 7.5 APPLICATION POTENTIAL OF LIQUID CRYSTAL-CONTAINING ELECTROSPUN FIBERS
  • REFERENCES
  • 8. Functional Liquid Crystalline Block Copolymers: Order Meets Self-Assembled Nanostructures
  • 8.1 WHAT ARE FUNCTIONAL LIQUID CRYSTALLINE BLOCK COPOLYMERS?
  • 8.2 MACROSCOPIC ORIENTATION OF NANODOMAINS
  • 8.3 SHAPE-MEMORY MATERIALS AND ELASTOMERS
  • 8.4 STIMULI-RESPONSIVE VESICLES IN SOLUTION
  • 8.5 OUTLOOK
  • REFERENCES
  • 9. Semiconducting Applications of Polymerizable Liquid Crystals
  • 9.1 INTRODUCTION
  • 9.2 MATERIAL PROPERTIES
  • 9.2.1 Crosslinking of Reactive Mesogens
  • 9.2.2 Optical Properties of Calamitic Reactive Mesogens
  • 9.2.3 Electrical Properties of Calamitic Reactive Mesogens
  • 9.3 OLEDs
  • 9.3.1 Principle and Applications
  • 9.3.2 Polarized Electroluminescence Using Reactive Mesogens
  • 9.3.2.1 Introduction
  • 9.3.2.2 Photoalignment
  • 9.3.2.3 Progress in RMs for Polarized OLEDs
  • 9.3.3 Pixellated Devices
  • 9.4 ORGANIC FIELD-EFFECT TRANSISTORS.
  • 9.4.1 Principle
  • 9.4.2 Progress in Reactive Mesogens for OFETs
  • 9.5 DISCUSSION AND CONCLUSION
  • REFERENCES
  • 10. Liquid Crystals of Carbon Nanotubes and Carbon Nanotubes in Liquid Crystals
  • 10.1 INTRODUCTION
  • 10.2 DISPERSION OF CARBON NANOTUBES
  • 10.3 LIQUID CRYSTAL PHASES OF CARBON NANOTUBES
  • 10.4 CARBON NANOTUBES ALIGNED BY THERMOTROPIC LIQUID CRYSTALS
  • 10.5 CARBON NANOTUBES ALIGNED BY LYOTROPIC LIQUID CRYSTALS
  • 10.6 CARBON NANOTUBES IN LIQUID CRYSTALLINE POLYMERS OR POLYMERIZED LIQUID CRYSTALS
  • 10.7 CONCLUSIONS AND OUTLOOK
  • REFERENCES
  • 11. Liquid Crystals in Metamaterials
  • 11.1 INTRODUCTION
  • 11.2 METAMATERIALS BACKGROUND
  • 11.3 RF LC METAMATERIALS
  • 11.4 RF TUNABLE "META-SURFACES" WITH LCs
  • 11.5 LC TUNING OF META-ATOMS
  • 11.6 OPTICAL METAMATERIALS WITH LCs
  • 11.7 LC INTERACTION WITH PLASMONIC METAMATERIAL STRUCTURES
  • 11.8 LIQUID CRYSTALS IN SELF-ASSEMBLED METAMATERIALS
  • 11.9 CHIRAL METAMATERIALS
  • 11.10 CONCLUSION OUTLOOK
  • REFERENCES
  • 12. Ferroelectric Colloids in Liquid Crystals
  • 12.1 INTRODUCTION
  • 12.2 PARTICLES INTERACTION AND THE PROBLEM OF COLLOID STABILITY
  • 12.3 PREPARATION OF THE FERROELECTRIC COLLOIDS
  • 12.4 ORIENTATIONAL ORDERING IN FERROELECTRIC LIQUID CRYSTAL COLLOIDS
  • 12.5 DIELECTRIC AND REORIENTATIONAL PROPERTIES OF FERROELECTRIC LC COLLOIDS
  • 12.6 CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 13. Fact or Fiction: Cybotactic Groups in the Nematic Phase of Bent Core Mesogens
  • 13.1 INTRODUCTION
  • 13.2 NEMATIC PHASE OF ROD-LIKE MOLECULES
  • 13.3 X-RAY SCATTERING
  • 13.4 NEMATIC PHASE OF BENT CORE MESOGENS
  • 13.5 SUMMARY
  • REFERENCES
  • 14. Lyotropic Chromonic Liquid Crystals: Emerging Applications
  • 14.1 INTRODUCTION
  • 14.2 STRUCTURES AND PHASE PROPERTIES OF LCLCs
  • 14.2.1 Food Dye Sunset Yellow as LCLCs
  • 14.2.1.1 X-ray Diffraction Measurement of SSY Water Solutions.
  • Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications
  • CONTENTS
  • Preface
  • Contributors
  • 1. Liquid Crystal Lasers
  • 1.1 INTRODUCTION
  • 1.2 TYPES OF LASERS
  • 1.2.1 DFB CLC Lasers
  • 1.2.2 Defect Mode Lasing
  • 1.3 LOWERING THRESHOLD
  • 1.3.1 Lowering Threshold by Improved Cavity Structures
  • 1.3.2 Lowering Threshold by Improved Excitation Conditions
  • 1.3.3 Lowering Threshold by Improved Materials
  • 1.4 TUNABILITY
  • 1.4.1 Thermal Tuning
  • 1.4.2 Electric Field Tuning
  • 1.4.3 Phototuning
  • 1.4.4 Mechanical Tuning
  • 1.4.5 Spatial Tuning
  • 1.4.6 Multimode Lasing
  • 1.5 3D LC LASERS
  • 1.6 CONCLUSIONS
  • REFERENCES
  • 2. Self-Organized Semiconducting Discotic Liquid Crystals for Optoelectronic Applications
  • 2.1 INTRODUCTION
  • 2.2 CHARGE TRANSPORT AND MEASUREMENTS IN DLCs
  • 2.2.1 Charge Transport in DLC Semiconductors
  • 2.2.2 Measurements of Charge Mobility
  • 2.2.2.1 Time of Flight (TOF)
  • 2.2.2.2 Pulse-Radiolysis Time-Resolved Microwave Conductivity (PR-TRMC)
  • 2.2.2.3 Space-Charge-Limited Current (SCLC)
  • 2.2.2.4 FET
  • 2.3 DISCOTIC MOLECULAR SYSTEMS
  • 2.3.1 General DLC Molecules with High Charge Mobility
  • 2.3.2 H-Bond Assisted DLCs
  • 2.3.3 DLCs with Partially Perfluorinated Periphery
  • 2.3.4 Incorporating Fullerenes into DLCs
  • 2.3.5 Incorporating Metal Elements into DLCs
  • 2.3.6 Incorporating Gold Nanoparticles (GNPs) in DLCs
  • 2.4 ALIGNMENT OF DLC MATERIALS IN ACTIVE SEMICONDUCTING LAYERS
  • 2.4.1 Homeotropic Alignment
  • 2.4.2 Planar Alignment
  • 2.5 APPLICATIONS OF SELF-ASSEMBLED DLCs
  • 2.5.1 Solar Cells
  • 2.5.2 OLEDs
  • 2.5.3 OFETs
  • 2.6 CONCLUSIONS AND OUTLOOK
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 3. Magnetic Liquid Crystals
  • 3.1 INTRODUCTION
  • 3.2 MAGNETIC ANISOTROPY (?x) OF LCs
  • 3.3 DIAMAGNETIC LCs
  • 3.4 PARAMAGNETIC METALLOMESOGENS
  • 3.4.1 d-Block Metal Complexes.
  • 5.2.3 Photoinduced Nematic to Isotropic Phase Transition
  • 5.2.4 Characterization of Liquid Crystal to Isotropic Phase Transition Using Polarizing Optical Microscope
  • 5.2.5 Photoinduced Nematic to Chiral Nematic Phase Transition
  • 5.2.6 Photoinduced Transitions Involving Smectic and Blue Phases
  • 5.2.7 Photoinduced Transitions Involving Columnar Phase
  • 5.3 DETAILED ACCOUNT OF PIPT IN SPECIFIC SYSTEMS
  • 5.3.1 Surface Fields
  • 5.3.1.1 Aerosil-LC
  • 5.3.1.2 Polymer Matrix
  • 5.3.2 Influence of Anisotropy Reducing Component
  • 5.3.3 Influence of the Orientational Order
  • 5.3.4 Acceleration of TBR by an External Field
  • 5.3.5 Effect of Elevated Pressure
  • 5.3.6 Dynamic Self-Assembly of the Smectic Phase
  • 5.3.7 Tilt Susceptibility Behavior Across SmA-SmC?* Transition
  • 5.3.7.1 Polarization-Tilt Coupling in an Antiferroelectric System
  • 5.3.7.2 A System with Bent-Core Molecules
  • 5.4 APPLICATIONS
  • 5.4.1 Holography
  • 5.4.2 Soft Actuators
  • 5.5 SUMMARY AND OUTLOOK
  • REFERENCES
  • 6. Light-Driven Chiral Molecular Switches or Motors in Liquid Crystal Media
  • 6.1 INTRODUCTION
  • 6.2 PHOTORESPONSIVE CHOLESTERIC LIQUID CRYSTALS
  • 6.2.1 Helical Twisting Power of Chiral Dopants
  • 6.3 LIGHT-DRIVEN MOLECULAR SWITCHES OR MOTORS AS DOPANTS
  • 6.3.1 Chiral Azobenzenes as Dopants
  • 6.3.2 Chiral Olefins as Dopants
  • 6.3.3 Chiral Diarylethenes as Dopants
  • 6.3.4 Chiral Spirooxazines as Dopants
  • 6.3.5 Chiral Fulgides as Dopants
  • 6.3.6 Chiral Overcrowded Alkenes as Dopants
  • 6.3.7 Axially Chiral Bicyclic Ketones as Dopants
  • 6.4 CONCLUSION
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 7. Liquid Crystal-Functionalized Nano- and Microfibers Produced by Electrospinning
  • 7.1 INTRODUCTION: WHY ELECTROSPINNING WITH LIQUID CRYSTALS
  • 7.2 WHAT IS ELECTROSPINNING
  • 7.2.1 Polymers and Solvents Convenient for Electrospinning.