Cargando…

Doing Bayesian Data Analysis : a Tutorial Introduction with R and BUGS.

There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kruschke, John
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Burlington : Elsevier Science, 2010.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000Mi 4500
001 OR_ocn761646983
003 OCoLC
005 20231017213018.0
006 m o d
007 cr |n|---|||||
008 111121s2010 vtu ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCQ  |d YDXCP  |d OCLCQ  |d CDX  |d ORE  |d UMI  |d COO  |d ORZ  |d DEBSZ  |d OCLCF  |d IDEBK  |d OCLCO  |d OCLCQ  |d MERUC  |d OCLCQ  |d VT2  |d C6I  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 698912792  |a 731904841  |a 801812930 
020 |a 9780123814869 
020 |a 0123814863 
020 |z 9780123814852 
020 |z 0123814855 
024 8 |a 9786612954962 
029 1 |a AU@  |b 000048546808 
029 1 |a AU@  |b 000050013210 
029 1 |a DEBBG  |b BV040900682 
029 1 |a DEBSZ  |b 378275844 
029 1 |a DEBSZ  |b 381367096 
029 1 |a DEBSZ  |b 452498635 
035 |a (OCoLC)761646983  |z (OCoLC)698912792  |z (OCoLC)731904841  |z (OCoLC)801812930 
037 |a 295496  |b MIL 
050 4 |a QA279.5 
082 0 4 |a 519.5/42  |a 519.542 
049 |a UAMI 
100 1 |a Kruschke, John. 
245 1 0 |a Doing Bayesian Data Analysis :  |b a Tutorial Introduction with R and BUGS. 
260 |a Burlington :  |b Elsevier Science,  |c 2010. 
300 |a 1 online resource (673 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover; Doing Bayesian Data Analysis; Copyright page; Dedication; Table of contents; Chapter 1. This Book's Organization: Read Me First!; 1.1 Real People Can Read This Book; 1.2 Prerequisites; 1.3 The Organization of This Book; 1.4 Gimme Feedback (Be Polite); 1.5 Acknowledgments; Part 1: The Basics: Parameters, Probability, Bayes' Rule, and R; Chapter 2. Introduction: Models We Believe In; 2.1 Models of Observations and Models of Beliefs; 2.2 Three Goals for Inference from Data; 2.3 The R Programming Language; 2.4 Exercises; Chapter 3. What Is This Stuff Called Probability? 
505 8 |a 3.1 The Set of All Possible Events3.2 Probability: Outside or Inside the Head; 3.3 Probability Distributions; 3.4 Two-Way Distributions; 3.5 R Code; 3.6 Exercises; Chapter 4. Bayes' Rule; 4.1 Bayes' Rule; 4.2 Applied to Models and Data; 4.3 The Three Goals of Inference; 4.4 R Code; 4.5 Exercises; Part 2: All the Fundamentals Applied to Inferring a Binomial Proportion; Chapter 5. Inferring a Binomial Proportion via Exact Mathematical Analysis; 5.1 The Likelihood Function: Bernoulli Distribution; 5.2 A Description of Beliefs: The Beta Distribution; 5.3 Three Inferential Goals. 
505 8 |a 5.4 Summary: How to Do Bayesian Inference5.5 R Code; 5.6 Exercises; Chapter 6. Inferring a Binomial Proportion via Grid Approximation; 6.1 Bayes' Rule for Discrete Values of?; 6.2 Discretizing a Continuous Prior Density; 6.3 Estimation; 6.4 Prediction of Subsequent Data; 6.5 Model Comparison; 6.6 Summary; 6.7 R Code; 6.8 Exercises; Chapter 7. Inferring a Binomial Proportion via the Metropolis Algorithm; 7.1 A Simple Case of the Metropolis Algorithm; 7.2 The Metropolis Algorithm More Generally; 7.3 From the Sampled Posterior to the Three Goals; 7.4 MCMC in BUGS; 7.5 Conclusion; 7.6 R Code. 
505 8 |a 7.7 ExercisesChapter 8. Inferring Two Binomial Proportions via Gibbs Sampling; 8.1 Prior, Likelihood, and Posterior for Two Proportions; 8.2 The Posterior via Exact Formal Analysis; 8.3 The Posterior via Grid Approximation; 8.4 The Posterior via Markov Chain Monte Carlo; 8.5 Doing It with BUGS; 8.6 How Different Are the Underlying Biases?; 8.7 Summary; 8.8 R Code; 8.9 Exercises; Chapter 9. Bernoulli Likelihood with Hierarchical Prior; 9.1 A Single Coin from a Single Mint; 9.2 Multiple Coins from a Single Mint; 9.3 Multiple Coins from Multiple Mints; 9.4 Summary; 9.5 R Code; 9.6 Exercises. 
505 8 |a Chapter 10. Hierarchical Modeling and Model Comparison10.1 Model Comparison as Hierarchical Modeling; 10.2 Model Comparison in BUGS; 10.3 Model Comparison and Nested Models; 10.4 Review of Hierarchical Framework for Model Comparison; 10.5 Exercises; Chapter 11. Null Hypothesis Significance Testing; 11.1 NHST for the Bias of a Coin; 11.2 Prior Knowledge about the Coin; 11.3 Confidence Interval and Highest Density Interval; 11.4 Multiple Comparisons; 11.5 What a Sampling Distribution Is Good For; 11.6 Exercises; Chapter 12. Bayesian Approaches to Testing a Point ("Null") Hypothesis. 
520 |a There is an explosion of interest in Bayesian statistics, primarily because recently created computational methods have finally made Bayesian analysis obtainable to a wide audience. Doing Bayesian Data Analysis, A Tutorial Introduction with R and BUGS provides an accessible approach to Bayesian data analysis, as material is explained clearly with concrete examples. The book begins with the basics, including essential concepts of probability and random sampling, and gradually progresses to advanced hierarchical modeling methods for realistic data. The text delivers comprehensive coverage of all. 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Bayesian statistical decision theory. 
650 0 |a R (Computer program language) 
650 6 |a Théorie de la décision bayésienne. 
650 6 |a R (Langage de programmation) 
650 7 |a Bayesian statistical decision theory  |2 fast 
650 7 |a R (Computer program language)  |2 fast 
776 0 8 |i Print version:  |a Kruschke, John.  |t Doing Bayesian Data Analysis : A Tutorial Introduction with R and BUGS.  |d Burlington : Elsevier Science, ©2010  |z 9780123814852 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780123814852/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a Coutts Information Services  |b COUT  |n 17157338 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL802548 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 295496 
938 |a YBP Library Services  |b YANK  |n 7248991 
994 |a 92  |b IZTAP