|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
OR_ocn760205104 |
003 |
OCoLC |
005 |
20231017213018.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
111110s2012 flu ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e pn
|c N$T
|d E7B
|d OCLCQ
|d DEBSZ
|d OCLCQ
|d UMI
|d VPI
|d COO
|d YDXCP
|d CDX
|d OCLCF
|d CRCPR
|d UIU
|d IDEBK
|d SFB
|d S4S
|d EBLCP
|d OCLCQ
|d OCL
|d OCLCQ
|d OCLCO
|d OCLCA
|d OCLCQ
|d MERUC
|d OCLCO
|d UAB
|d OCLCQ
|d OCLCO
|d NJR
|d OCLCO
|d OCLCA
|d U3W
|d OCLCO
|d OCLCQ
|d CAUOI
|d ERL
|d CEF
|d NLE
|d OCLCO
|d INT
|d AU@
|d OCLCO
|d OCLCQ
|d UKMGB
|d OCLCO
|d OCLCQ
|d WYU
|d OCLCA
|d TYFRS
|d LEAUB
|d OCLCO
|d OCLCQ
|d UKAHL
|d OCLCQ
|d OCLCA
|d OCLCQ
|d OCLCA
|d VT2
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCL
|d OCLCO
|
066 |
|
|
|c (S
|
016 |
7 |
|
|a 101568204
|2 DNLM
|
016 |
7 |
|
|a 018390451
|2 Uk
|
019 |
|
|
|a 760054932
|a 760179369
|a 766417479
|a 816868354
|a 861618470
|a 899156642
|a 962009958
|a 1029486031
|a 1031044220
|a 1049203376
|a 1049878292
|a 1053955245
|a 1058072220
|a 1065689259
|a 1202484417
|a 1224919122
|a 1240534465
|
020 |
|
|
|a 9781439816912
|q (electronic bk.)
|
020 |
|
|
|a 1439816913
|q (electronic bk.)
|
020 |
|
|
|a 1283311534
|
020 |
|
|
|a 9781283311533
|
020 |
|
|
|z 9781439816905
|
020 |
|
|
|z 1439816905
|
020 |
|
|
|a 9781466533400
|
020 |
|
|
|a 1466533404
|
020 |
|
|
|a 0429093314
|
020 |
|
|
|a 9780429093319
|
020 |
|
|
|a 9786613311535
|
020 |
|
|
|a 6613311537
|
024 |
8 |
|
|a 9786613311535
|
024 |
8 |
|
|a 40020385518
|
029 |
1 |
|
|a AU@
|b 000050015370
|
029 |
1 |
|
|a AU@
|b 000052162564
|
029 |
1 |
|
|a DEBBG
|b BV041433149
|
029 |
1 |
|
|a DEBBG
|b BV042794219
|
029 |
1 |
|
|a DEBSZ
|b 372705243
|
029 |
1 |
|
|a DEBSZ
|b 398291160
|
029 |
1 |
|
|a DEBSZ
|b 431627649
|
029 |
1 |
|
|a DEBSZ
|b 463017234
|
029 |
1 |
|
|a NZ1
|b 14230620
|
029 |
1 |
|
|a UKMGB
|b 018390451
|
035 |
|
|
|a (OCoLC)760205104
|z (OCoLC)760054932
|z (OCoLC)760179369
|z (OCoLC)766417479
|z (OCoLC)816868354
|z (OCoLC)861618470
|z (OCoLC)899156642
|z (OCoLC)962009958
|z (OCoLC)1029486031
|z (OCoLC)1031044220
|z (OCoLC)1049203376
|z (OCoLC)1049878292
|z (OCoLC)1053955245
|z (OCoLC)1058072220
|z (OCoLC)1065689259
|z (OCoLC)1202484417
|z (OCoLC)1224919122
|z (OCoLC)1240534465
|
037 |
|
|
|a CL0500000325
|b Safari Books Online
|
050 |
|
4 |
|a TJ216
|b .C67 2012eb
|
060 |
|
4 |
|a QU 26.5
|
072 |
|
7 |
|a MED
|x 110000
|2 bisacsh
|
072 |
|
7 |
|a PSA
|2 bicssc
|
082 |
0 |
4 |
|a 629.83
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Cosentino, Carlo.
|
245 |
1 |
0 |
|a Feedback control in systems biology /
|c Carlo Cosentino, Declan Bates.
|
260 |
|
|
|a Boca Raton :
|b CRC Press,
|c 2012.
|
300 |
|
|
|a 1 online resource (xiii, 278 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|6 880-01
|a Introduction -- Linear systems -- Nonlinear systems -- Negative feedback systems -- Positive feedback systems -- Model validation using robustness analysis -- Reverse engineering biomolecular networks -- Stochastic effects in biological control systems.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Feedback Control in Systems Biology.
|
546 |
|
|
|a English.
|
590 |
|
|
|a O'Reilly
|b O'Reilly Online Learning: Academic/Public Library Edition
|
650 |
|
0 |
|a Feedback control systems.
|
650 |
|
0 |
|a Biological systems.
|
650 |
|
0 |
|a Systems biology.
|
650 |
|
0 |
|a Biological models.
|
650 |
1 |
2 |
|a Systems Biology
|
650 |
2 |
2 |
|a Feedback, Physiological
|
650 |
2 |
2 |
|a Models, Biological
|
650 |
|
4 |
|a Feedback control systems.
|
650 |
|
4 |
|a Systems biology.
|
650 |
|
4 |
|a Biological models.
|
650 |
|
6 |
|a Systèmes à réaction.
|
650 |
|
6 |
|a Systèmes biologiques.
|
650 |
|
6 |
|a Biologie systémique.
|
650 |
|
6 |
|a Modèles biologiques.
|
650 |
|
7 |
|a MEDICAL
|x Histology.
|2 bisacsh
|
650 |
|
7 |
|a Systems biology
|2 fast
|
650 |
|
7 |
|a Biological models
|2 fast
|
650 |
|
7 |
|a Feedback control systems
|2 fast
|
650 |
|
7 |
|a Biological systems
|2 fast
|
700 |
1 |
|
|a Bates, Declan.
|
776 |
0 |
8 |
|i Print version:
|a Cosentino, Carlo.
|t Feedback control in systems biology.
|d Boca Raton : CRC Press, 2012
|z 9781439816905
|w (DLC) 2011036516
|w (OCoLC)748764434
|
856 |
4 |
0 |
|u https://learning.oreilly.com/library/view/~/9781439816912/?ar
|z Texto completo (Requiere registro previo con correo institucional)
|
880 |
0 |
0 |
|6 505-01/(S
|g Machine generated contents note:
|g 1.
|t Introduction --
|g 1.1.
|t What is feedback control--
|g 1.2.
|t Feedback control in biological systems --
|g 1.2.1.
|t tryptophan operon feedback control system --
|g 1.2.2.
|t polyamine feedback control system --
|g 1.2.3.
|t heat shock feedback control system --
|g 1.3.
|t Application of control theory to biological systems: A historical perspective --
|t References --
|g 2.
|t Linear systems --
|g 2.1.
|t Introduction --
|g 2.2.
|t State-space models --
|g 2.3.
|t Linear time-invariant systems and the frequency response --
|g 2.4.
|t Fourier analysis --
|g 2.5.
|t Transfer functions and the Laplace transform --
|g 2.6.
|t Stability --
|g 2.7.
|t Change of state variables and canonical representations --
|g 2.8.
|t Characterising system dynamics in the time domain --
|g 2.9.
|t Characterising system dynamics in the frequency domain --
|g 2.10.
|t Block diagram representations of interconnected systems --
|g 2.11.
|t Case Study I: Characterising the frequency dependence of osmo-adaptation in Saccharomyces cerevisiae --
|g 2.11.1.
|t Introduction --
|g 2.11.2.
|t Frequency domain analysis --
|g 2.11.3.
|t Time domain analysis --
|g 2.12.
|t Case Study II: Characterising the dynamics of the Dictyostelium external signal receptor network --
|g 2.12.1.
|t Introduction --
|g 2.12.2.
|t generic structure for ligand-receptor interaction networks --
|g 2.12.3.
|t Structure of the ligand-receptor interaction network in aggregating Dictyostelium cells --
|g 2.12.4.
|t Dynamic response of the ligand-receptor interaction network in Dictyostelium --
|t References --
|g 3.
|t Nonlinear systems --
|g 3.1.
|t Introduction --
|g 3.2.
|t Equilibrium points --
|g 3.3.
|t Linearisation around equilibrium points --
|g 3.4.
|t Stability and regions of attractions --
|g 3.4.1.
|t Lyapunov stability --
|g 3.4.2.
|t Region of attraction --
|g 3.5.
|t Optimisation methods for nonlinear systems --
|g 3.5.1.
|t Local optimisation methods --
|g 3.5.2.
|t Global optimisation methods --
|g 3.5.3.
|t Linear matrix inequalities --
|g 3.6.
|t Case Study III: Stability analysis of tumour dormancy equilibrium --
|g 3.6.1.
|t Introduction --
|g 3.6.2.
|t Model of cancer development --
|g 3.6.3.
|t Stability of the equilibrium points --
|g 3.6.4.
|t Checking inclusion in the region of attraction --
|g 3.6.5.
|t Analysis of the tumour dormancy equilibrium --
|g 3.7.
|t Case Study IV: Global optimisation of a model of the tryptophan control system against multiple experiment data --
|g 3.7.1.
|t Introduction --
|g 3.7.2.
|t Model of the tryptophan control system --
|g 3.7.3.
|t Model analysis using global optimisation --
|t References --
|g 4.
|t Negative feedback systems --
|g 4.1.
|t Introduction --
|g 4.2.
|t Stability of negative feedback systems --
|g 4.3.
|t Performance of negative feedback systems --
|g 4.4.
|t Fundamental tradeoffs with negative feedback --
|g 4.5.
|t Case Study V: Analysis of stability and oscillations in the p53-Mdm2 feedback system --
|g 4.6.
|t Case Study VI: Perfect adaptation via integral feedback control in bacterial chemotaxis --
|g 4.6.1.
|t mathematical model of bacterial chemotaxis --
|g 4.6.2.
|t Analysis of the perfect adaptation mechanism --
|g 4.6.3.
|t Perfect adaptation requires demethylation of active only receptors --
|t References --
|g 5.
|t Positive feedback systems --
|g 5.1.
|t Introduction --
|g 5.2.
|t Bifurcations, bistability and limit cycles --
|g 5.2.1.
|t Bifurcations and bistability --
|g 5.2.2.
|t Limit cycles --
|g 5.3.
|t Monotone systems --
|g 5.4.
|t Chemical reaction network theory --
|g 5.4.1.
|t Preliminaries on reaction network structure --
|g 5.4.2.
|t Networks of deficiency zero --
|g 5.4.3.
|t Networks of deficiency one --
|g 5.5.
|t Case Study VII: Positive feedback leads to multistability, bifurcations and hysteresis in a MAPK cascade --
|g 5.6.
|t Case Study VIII: Coupled positive and negative feedback loops in the yeast galactose pathway --
|t References --
|g 6.
|t Model validation using robustness analysis --
|g 6.1.
|t Introduction --
|g 6.2.
|t Robustness analysis tools for model validation --
|g 6.2.1.
|t Bifurcation diagrams --
|g 6.2.2.
|t Sensitivity analysis --
|g 6.2.3.
|t μ-analysis --
|g 6.2.4.
|t Optimisation-based robustness analysis --
|g 6.2.5.
|t Sum-of-squares polynomials --
|g 6.2.6.
|t Monte Carlo simulation --
|g 6.3.
|t New robustness analysis tools for biological systems --
|g 6.4.
|t Case Study IX: Validating models of cAMP oscillations in aggregating Dictyostelium cells --
|g 6.5.
|t Case Study X: Validating models of the p53-Mdm2 System --
|t References --
|g 7.
|t Reverse engineering biomolecular networks --
|g 7.1.
|t Introduction --
|g 7.2.
|t Inferring network interactions using linear models --
|g 7.2.1.
|t Discrete-time vs continuous-time model --
|g 7.3.
|t Least squares --
|g 7.3.1.
|t Least squares for dynamical systems --
|g 7.3.2.
|t Methods based on least squares regression --
|g 7.4.
|t Exploiting prior knowledge --
|g 7.4.1.
|t Network inference via LMI-based optimisation --
|g 7.4.2.
|t MAX-PARSE: An algorithm for pruning a fully connected network according to maximum parsimony --
|g 7.4.3.
|t CORE-Net: A network growth algorithm using preferential attachment --
|g 7.5.
|t Dealing with measurement noise --
|g 7.5.1.
|t Total least squares --
|g 7.5.2.
|t Constrained total least squares --
|g 7.6.
|t Exploiting time-varying models --
|g 7.7.
|t Case Study XI: Inferring regulatory interactions in the innate immune system from noisy measurements --
|g 7.8.
|t Case Study XII: Reverse engineering a cell cycle regulatory subnetwork of Saccharomyces cerevisiae from experimental microarray data --
|g 7.8.1.
|t PACTLS: An algorithm for reverse engineering partially known networks from noisy data --
|g 7.8.2.
|t Results --
|t References --
|g 8.
|t Stochastic effects in biological control systems --
|g 8.1.
|t Introduction --
|g 8.2.
|t Stochastic modelling and simulation --
|g 8.3.
|t framework for analysing the effect of stochastic noise on stability --
|g 8.3.1.
|t effective stability approximation --
|g 8.3.2.
|t computationally efficient approximation of the dominant stochastic perturbation --
|g 8.3.3.
|t Analysis using the Nyquist stability criterion --
|g 8.4.
|t Case Study XIII: Stochastic effects on the stability of cAMP oscillations in aggregating Dictyostelium cells --
|g 8.5.
|t Case Study XIV: Stochastic effects on the robustness of cAMP oscillations in aggregating Dictyostelium cells --
|t References.
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH24073572
|
938 |
|
|
|a Taylor & Francis
|b TAFR
|n 9780429093319
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 19872997
|
938 |
|
|
|a Taylor & Francis
|b TAFR
|n CRC0KE10797PDF
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL1633649
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10502492
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 398416
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n 331153
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 7060264
|
994 |
|
|
|a 92
|b IZTAP
|