Cargando…

Data analysis : what can be learned from the past 50 years /

"This book explores the many provocative questions concerning the fundamentals of data analysis. It is based on the time-tested experience of one of the gurus of the subject matter. Why should one study data analysis? How should it be taught? What techniques work best, and for whom? How valid a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Huber, Peter J.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley, ©2011.
Colección:Wiley series in probability and statistics
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:"This book explores the many provocative questions concerning the fundamentals of data analysis. It is based on the time-tested experience of one of the gurus of the subject matter. Why should one study data analysis? How should it be taught? What techniques work best, and for whom? How valid are the results? How much data should be tested? Which machine languages should be used, if used at all? Emphasis on apprenticeship (through hands-on case studies) and anecdotes (through real-life applications) are the tools that Peter J. Huber uses in this volume. Concern with specific statistical techniques is not of immediate value; rather, questions of strategy - when to use which technique - are employed. Central to the discussion is an understanding of the significance of massive (or robust) data sets, the implementation of languages, and the use of models. Each is sprinkled with an ample number of examples and case studies. Personal practices, various pitfalls, and existing controversies are presented when applicable. The book serves as an excellent philosophical and historical companion to any present-day text in data analysis, robust statistics, data mining, statistical learning, or computational statistics"--Provided by publisher.
"This book explores the many provocative questions concerning the fundamentals of data analysis"--
Descripción Física:1 online resource (xiv, 210 pages) : illustrations
Bibliografía:Includes bibliographical references and index.
ISBN:9781118018248
1118018249
1118018265
9781118018255
1118018257
9781118018262