Cargando…

Statistical methods for fuzzy data /

Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Viertl, R. (Reinhard)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, West Sussex : Wiley, 2011.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Descripción
Sumario:Statistical data are not always precise numbers, or vectors, or categories. Real data are frequently what is called fuzzy. Examples where this fuzziness is obvious are quality of life data, environmental, biological, medical, sociological and economics data. Also the results of measurements can be best described by using fuzzy numbers and fuzzy vectors respectively. Statistical analysis methods have to be adapted for the analysis of fuzzy data. In this book, the foundations of the description of fuzzy data are explained, including methods on how to obtain the characterizing function of fuzzy m.
Descripción Física:1 online resource (xii, 256 pages) : illustrations
Bibliografía:Includes bibliographical references (pages 251-252) and index.
ISBN:9780470974421
0470974427
9780470974414
0470974419
9780470974568
0470974567
1280767545
9781280767548