Cargando…

Principles of MEMS /

"The building blocks of MEMS design through closed-form solutions. Microelectromechanical Systems, or MEMS, is the technology of very small systems; it is found in everything from inkjet printers and cars to cell phones, digital cameras, and medical equipment. This book describes the principles...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lee, Ki Bang
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : WILEY, ©2010.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • 1. INTRODUCTION
  • 1.1. Microelectromechanical Systems
  • 1.2. Coupled Systems
  • 1.3. Knowledge Required
  • 1.4. Dimensional Analysis
  • 2. MICROFABRICATION
  • 2.1. Bulk and Surface Micromachining
  • 2.2. Lithography
  • 2.3. Layer Deposition
  • 2.4. Layer Etching
  • 2.5. Fabrication Process Design
  • 3. STATICS
  • 3.1. Static Equilibrium
  • 3.2. Stress-Strain Relationship
  • 3.3. Thermal Stress
  • 3.4. Beam Behavior Subjected to a Torsional Moment
  • 3.5. Moment-Curvature Relationship
  • 3.6. Beam Equation
  • 3.7. Galerkin's Method
  • 3.8. Energy Method
  • 3.9. Energy Method for Beam Problems
  • 4. STATIC BEHAVIOR OF MICROSTRUCTURES
  • 4.1. Elements of Microstructures
  • 4.2. Stiffness of Commonly Used Beams
  • 4.3. Trusses
  • 4.4. Stiffness Transformation
  • 4.5. Static Behavior of Planar Structures
  • 4.6. Residual Stress
  • 4.7. Cubic Force of Structures
  • 4.8. Potential Energy
  • 4.9. Analogy Between Potential Energies
  • 5. DYNAMICS
  • 5.1. Cubic Equation
  • 5.2. Description of Motion
  • 5.3. Governing Equations of Dynamics
  • 5.4. Energy Conversion Between Potential and Kinetic Energy
  • 5.5. Free Vibration of Undamped Systems
  • 5.6. Vibration of Damped Systems
  • 5.7. Multidegree-of-freedom systems
  • 5.8. Continuous Systems
  • 5.9. Effective Mass, Damping, and Stiffness
  • 5.10. Systems with Repeated Structures
  • 5.11. Duffing's Equation
  • 6. FLUID DYNAMICS
  • 6.1. Viscous Flow
  • 6.2. Continuity Equation
  • 6.3. Navier-Stokes Equation
  • 6.4. Reynolds Equation
  • 6.5. Couette Flow
  • 6.6. Oscillating Plate in a Fluid
  • 6.7. Creeping Flow
  • 6.8. Squeeze Film
  • 7. ELECTROMAGNETICS
  • 7.1. Basic Elements of Electric Circuits
  • 7.2. Kirchhoff's Circuit Laws
  • 7.3. Electrostatics
  • 7.4. Force and Moment Due to an Electric Field
  • 7.5. Electrostatic Forces and Moments Acting on Various Objects
  • 7.6. Electromagnetic Force
  • 7.7. Force Acting on a Moving Charge in Electric and Magnetic Fields
  • 7.8. Piezoresistance
  • 7.9. Piezoelectricity
  • 8. PIEZOELECTRIC AND THERMAL ACTUATORS
  • 8.1. Composite Beams
  • 8.2. Piezoelectric Actuators
  • 8.3. Thermal Actuators
  • 9. ELECTROSTATIC AND ELECTROMAGNETIC ACTUATORS
  • 9.1. Electrostatic Actuators
  • 9.2. Comb Drive Actuator
  • 9.3. Parallel-Plate Actuator
  • 9.4. Torsional Actuator
  • 9.5. Fixed-Fixed Beam Actuator
  • 9.6. Cantilever Beam Actuator
  • 9.7. Dynamic Response of Gap-Closing Actuators
  • 9.8. Approximation of Gap-Closing Actuators
  • 9.9. Electromagnetic Actuators
  • 10. SENSORS
  • 10.1. Force and Pressure Sensors
  • 10.2. Accelerometers
  • 10.3. Electrostatic Accelerometers
  • 10.4. Vibratory Gyroscopes
  • 10.5. Other Issues
  • APPENDIX.