Cargando…

Location-based services handbook : applications, technologies, and security /

Location-Based Services Handbook: Applications, and Technologies, and Security is a comprehensive reference containing all aspects of essential technical information on location-based services (LBS) technology. With broad coverage ranging from basic concepts to research-grade material, it presents a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Ahson, Syed, Ilyas, Mohammad, 1953-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, FL : CRC Press, ©2011.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Machine generated contents note: 1. Positioning Technologies in Location-Based Services / Matthew Weber
  • 1.1. Introduction
  • 1.1.1. Overview of localization systems
  • 1.2. Geometric Principles for Location Estimation
  • 1.2.1. Trilateration
  • 1.2.2. Multilateration
  • 1.2.3. Triangulation
  • 1.2.4. Comparison between trilateration, multilateration, and triangulation
  • 1.3. Main Localization Techniques
  • 1.3.1. Time of arrival
  • 1.3.1.1. Radiofrequency technologies
  • 1.3.1.2. Laser technology
  • 1.3.1.3. Ultrasound technology
  • 1.3.1.4. Sounds technology
  • 1.3.2. Time difference of arrival
  • 1.3.3. Received signal strength indication
  • 1.3.3.1. Common localization technologies based on received signal strength indication fingerprinting
  • 1.3.3.2. Common localization technologies based on received signal strength indication with theoretical propagation models
  • 1.3.4. Angle of arrival
  • 1.4. Other Localization Methods
  • 1.4.1. Inertial navigation systems
  • 1.4.2. Proximity-based methods
  • 1.4.2.1. Convex positioning
  • 1.4.2.2. Centroid
  • 1.4.2.3. Center of gravity of overlapping areas
  • 1.4.2.4. Probabilistic techniques
  • 1.4.2.5. Hop-count based methods
  • 1.4.2.6. Amorphous localization
  • 1.4.2.7. Main technologies using proximity for localization
  • 1.4.3. Environment-based localization techniques
  • 1.4.4. Multimode approach for localization
  • 1.4.4.1. Introduction
  • 1.4.4.2. Diversity of technologies
  • 1.4.4.3. Diversity of localization techniques
  • 1.4.4.4. Diversity of reference objects: Multiple neighboring terminals and cooperative localization
  • 1.5. Comparison and Outlook
  • 1.6. Conclusions
  • Acknowledgments
  • References
  • 2. Wireless Location Technology in Location-Based Services / Xuexue Zhang
  • 2.1. Introduction
  • 2.2. Study on the Estimation of Position-Related Parameters (or Data Collection)
  • 2.2.1. Cell of origin
  • 2.2.2. Time of arrival
  • 2.2.3. Time difference of arrival
  • 2.2.4. Angle of arrival
  • 2.2.5. Received signal strength
  • 2.3. Infrastructure of Positioning in Cellular Network
  • 2.3.1. Cellular network fundamentals
  • 2.3.2. Classification of positioning infrastructures
  • 2.3.2.1. Integrated and stand-alone infrastructures
  • 2.3.2.2. Network-based and terminal-based positioning
  • 2.3.2.3. Satellites, cellular, and indoor infrastructures
  • 2.4. Cellular Networks
  • 2.4.1. Global positioning system solution
  • 2.4.2. Cell identification
  • 2.4.3. Problems and solutions in cellular network positioning
  • 2.4.3.1. Narrowband networks
  • 2.4.3.2. Code division multiple access
  • 2.4.3.3. Global system for mobile communications
  • 2.5. Precision and Accuracy
  • 2.5.1. Study of the multi-path promulgate
  • 2.5.2. Non-line-of-sight promulgate
  • 2.5.3. Code division multiple access multi-address access interference
  • 2.5.4. Other sources of positioning error
  • 2.6. Conclusion
  • References
  • 3. Location in Wireless Local Area Networks / Francisco Barcelo-Arroyo
  • 3.1. Introduction
  • 3.2. Techniques Based on Cell Identity
  • 3.3. Fingerprinting
  • 3.3.1. Matching algorithms
  • 3.3.2. Relevant approaches
  • 3.3.3. Performance characteristics
  • 3.3.4. Current trends
  • 3.4. Received Signal Strength Indicator-Based Ranging and Trilateration
  • 3.4.1. Received signal strength indicator-based ranging
  • 3.4.2. Performance characteristics
  • 3.5. Time of Arrival-Based Ranging/Trilateration
  • 3.5.1. Estimating time of arrival at the physical layer
  • 3.5.2. Estimating time of arrival at upper layers
  • 3.5.3. Performance characteristics
  • 3.6. Time Difference of Arrival
  • 3.6.1. Relevant proposals
  • 3.6.2. Performance characteristics
  • 3.7. Angle of Arrival or Direction of Arrival
  • 3.7.1. Relevant proposals
  • 3.7.2. Performance characteristics
  • 3.8. Assisted Global Positioning System
  • 3.9. Discussion
  • 3.10. Commercial Solutions
  • 3.10.1. Ekahau Real Time Location System
  • 3.10.2. Aeroscout Visibility System
  • 3.10.3. Skyhook Wireless Wi-Fi Positioning System
  • References
  • 4. Radio Frequency Identification Positioning / Shinichi Konomi
  • 4.1. Introduction
  • 4.2. RFID Tags as Location Reference Points
  • 4.3. Location Estimation Techniques
  • 4.4. Applications
  • 4.5. Facilitating Deployment
  • 4.6. Security and Privacy
  • 4.7. Real-World Deployment
  • 4.7.1. Prototype implementation
  • 4.7.2. Preliminary experiments
  • 4.7.3. Field experiment
  • 4.8. Conclusion
  • References
  • 5. Supporting Smart Mobile Navigation in a Smart Environment / Haosheng Huang
  • 5.1. Introduction
  • 5.2. Related Work
  • 5.2.1. Location-based services in a smart environment
  • 5.2.2. Location-based services in Web 2.0
  • 5.2.3. Mobile navigation
  • 5.3. Smart Environment
  • 5.3.1. Indoor positioning
  • 5.3.2. Wireless infrastructure
  • 5.4. User Interaction and Annotation
  • 5.4.1. User-generated content
  • 5.4.2. Motivation and data quality of user-generated content
  • 5.5. Collective Intelligence-Based Route Calculation
  • 5.5.1. Data modeling
  • 5.5.2. Collective intelligence-based route calculation
  • 5.5.2.1. Route calculation for mobile navigation
  • 5.5.2.2. Different kinds of best routes
  • 5.5.3. Discussion
  • 5.6. Context-Aware Adaptation on Software Architecture and Destination Selection
  • 5.6.1. Software architecture
  • 5.6.2. Destination selection
  • 5.7. Conclusions and Future Work
  • Acknowledgment
  • References
  • 6. Indoor Location Determination: Environmental Impacts, Algorithm Robustness, and Performance Evaluation / Yiming Ji
  • 6.1. Introduction
  • 6.2. Signal Strength Distortion Model
  • 6.3. Dynamic Localization Mechanisms
  • 6.3.1. Signal-location map
  • 6.3.2. Indoor radio propagation modeling
  • 6.3.3. Signal distance mapping
  • 6.3.4. Distance fitting
  • 6.3.5. Distance-based location search
  • 6.4. Simulations and System Comparison
  • 6.4.1. Testing environments
  • 6.4.2. Experimental strategy
  • 6.4.3. Simulations results
  • 6.4.3.1. Distance estimation
  • 6.4.3.2. Localization results
  • 6.4.4. Dependence on number of deployed sniffers and reference measurements
  • 6.4.4.1. Number of deployed sniffers
  • 6.4.4.2. Dependence on the number of reference measurements
  • 6.4.5. Robustness to signal strength distortion and security attacks
  • 6.4.6. Computation efficiency and scalability
  • 6.5. Related Research
  • 6.6. Conclusion
  • References
  • 7. Location-Aware Access Control: Scenarios, Modeling Approaches, and Selected Issues / Michael Decker
  • 7.1. Introduction
  • 7.2. Application Scenarios
  • 7.3. Basics of Access Control
  • 7.3.1. Discretionary access control
  • 7.3.2. Role-based access control
  • 7.3.3. Mandatory access control
  • 7.4. Generic Location-Aware Access Control Models
  • 7.4.1. Role-based access control
  • 7.4.2. Discretionary access control
  • 7.4.3. Mandatory access control
  • 7.5. Application-Specific Location-Aware Access Control Models
  • 7.5.1. Process-aware access control
  • 7.5.2. Access control for database systems
  • 7.6. Prevention of Location Spoofing
  • 7.7. Miscellaneous Aspects
  • 7.7.1. Access control for geospatial data
  • 7.7.2. Access control for location privacy
  • 7.7.3. Proximity-based access control with radio frequency identification technology
  • 7.8. Summary and Outlook
  • References
  • 8. Location-Based Services and Privacy / Nabil Ajam
  • 8.1. Location-based Services
  • 8.2. Satellite Systems
  • 8.2.1. Global positioning system
  • 8.2.2. Galileo
  • 8.2.3. Satellites system limits
  • 8.3. Positioning in Wi-Fi Networks
  • 8.3.1. Limits
  • 8.4. Cellular Positioning Techniques
  • 8.4.1. Location service
  • 8.4.2. Assisted-global navigation.
  • Satellite system
  • 8.4.3. Cell ID
  • 8.4.4. Observed time difference
  • 8.4.5. Uplink time difference of arrival
  • 8.4.6. Architecture of location service in cellular networks
  • 8.4.6.1. Added nodes
  • 8.4.6.2. Location service architecture in cellular networks
  • 8.4.6.3. Added functionalities in existing nodes
  • 8.5. Location Information Threats
  • 8.6. Location Privacy Policy
  • 8.6.1. Privacy definition
  • 8.6.2. Privacy in location-based services
  • 8.6.3. Privacy enforcement in cellular networks
  • 8.6.4. Shortcomings of privacy protection in cellular networks
  • 8.6.5. Service provider access to location information
  • 8.6.6. Privacy enhancement for location service in cellular networks
  • 8.7. Conclusion
  • References
  • 9. Protecting Privacy in Location-Based Applications / Thomas L. Martin
  • 9.1. Introduction
  • 9.2. Selecting a Location System to Support Privacy
  • 9.3. Cloaking to Protect Online Privacy
  • 9.3.1. Previous work in online location privacy
  • 9.3.2. Mathematical foundation of cloaking
  • 9.3.3. Cloaking system
  • 9.3.3.1. Rounding
  • 9.3.3.2. Truncating
  • 9.3.3.3. Geodetic resolution
  • 9.3.3.4. Randomization
  • 9.3.4. System analysis
  • 9.3.5. Resources
  • 9.3.5.1. Power
  • 9.3.5.2. Memory
  • 9.3.5.3. Run-time memory
  • 9.3.5.4. Bandwidth
  • 9.4. Problems with Corporate Tracking
  • 9.5. Protecting Privacy by Using Prediction
  • 9.5.1. Location determination
  • 9.5.1.1. Symbolic location
  • 9.5.2. Related work in location prediction
  • 9.5.2.1. MavHome
  • 9.5.2.2. Using the global positioning system to determine significant locations
  • 9.5.2.3. Dartmouth College mobility predictions.
  • Note continued: 9.5.2.4. Predicting future times of availability
  • 9.5.3. Prediction based on text compression
  • 9.5.3.1. Prediction by partial match
  • 9.5.4. experiment in prediction
  • 9.5.4.1. Location determination
  • 9.5.4.2. Representations
  • 9.5.4.3. Protecting privacy during the prediction process
  • 9.6. Conclusion
  • References
  • 10. Presence Services for the Support of Location-Based Applications / Luca Foschini
  • 10.1. Introduction
  • 10.2. Presence-Based LBS Infrastructures: Background and Open Issues
  • 10.2.1. Reference IMPP PS
  • 10.2.2. IMPS
  • 10.2.3. XMPP
  • 10.2.4. IMS PS
  • 10.2.5. Discussion
  • 10.3. State-of-the-Art of Management Solutions for IMS PS Scalability
  • 10.3.1. Local scope
  • 10.3.2. Intra-domain scope
  • 10.3.3. Inter-domain scope
  • 10.3.4. State-of-the-art summary
  • 10.4. IHMAS for IMS PS Scalability
  • 10.4.1. Design guidelines and architectural model for enhanced scalability of IMS PS
  • 10.4.1.1. Filtering criteria and session state management
  • 10.4.1.2. Intra-domain dynamic load balancing and data-centric sessions
  • 10.4.1.3. Service-aware static balancing to partition intra-domain load
  • 10.4.1.4. Inter-domain transmission optimizations
  • 10.4.2. IHMAS load-balancing solutions
  • 10.5. Presence-Based Infrastructures for LBS Support: Next Steps
  • 10.5.1. Real-time monitoring of IMS infrastructure
  • 10.5.2. Virtualized PSs for scalable composition of presence information
  • 10.5.3. Presence-based location data dissemination for emergency applications
  • 10.5.4. Dynamic load balancing and PS deployment over the Cloud
  • 10.6. Conclusions
  • References
  • 11. Data-Flow Management for Location-Based Service Applications Using the Zoning Concept / Ziad Hunaiti
  • 11.1. Introduction
  • 11.2. Static Zone-Based Update Mechanism
  • 11.2.1. Evaluation and testing
  • 11.2.1.1. Measuring the downloading time
  • 11.2.1.2. Measuring the average throughput
  • 11.2.1.3. Measuring the packet loss
  • 11.2.1.4. Database server evaluation
  • 11.3. Dynamic Zone-Based Update Mechanism
  • 11.3.1. Evaluation and testing
  • 11.3.2. Discussion
  • 11.4. Conclusion
  • References
  • 12. Assisted Global Navigation Satellite Systems: An Enabling Technology for High Demanding Location-Based Services / Fabio Dovis
  • 12.1. Introduction
  • 12.2. Assisted Global Positioning System and the Open Mobile Alliance-Secure User Plane Location Approach
  • 12.2.1. Overview on the secure user plane location architecture
  • 12.2.2. Procedures for positioning
  • 12.2.3. Mobile originated trellis
  • 12.3. Infrastructure for Practical Tests
  • 12.3.1. SAT-SURF & SAT-SURFER
  • 12.3.1.1. SAT-SURF hardware platform
  • 12.3.1.2. SAT-SURFER software suite
  • 12.4. Trials and Parameters under Test
  • 12.5. Concluding Remarks
  • References.