Cargando…

Advanced signal integrity for high-speed digital designs /

Signal integrity has become the key issue in most high-performance digital designs. Now, from the foremost experts in the field, this book leverages theory and techniques from non-related fields such as applied physics, communications, and microwave engineering and applies them to the field of high-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hall, Stephen H.
Otros Autores: Heck, Howard L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken, N.J. : Wiley : IEEE, ©2009.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • Preface
  • Acknowledgments
  • Chapter 1: Introduction: The importance of signal integrity
  • 1.1 Computing Power: Past and Future
  • 1.2 The problem
  • 1.3 The Basics
  • 1.4 A new realm of bus design
  • 1.5 Scope
  • 1.6 Summary
  • 1.7 References
  • Chapter 2: Electromagnetic Fundamentals for Signal Integrity
  • 2.1 Introduction
  • 2.2 Maxwell's Equations
  • 2.3 Common Vector Operators
  • 2.4 Wave Propagation
  • 2.5 Electrostatics
  • 2.6 Magnetostatics
  • 2.7 Power Flow and the Poynting Vector
  • 2.8 Reflections of Electromagnetic Waves
  • 2.9 References
  • 2.10 Problems
  • Chapter 3: Ideal Transmission Line Fundamentals
  • 3.1 Transmission Line Structures
  • 3.2 Wave propagation on loss free transmission lines
  • 3.3 Transmission line properties
  • 3.4 Transmission line parameters for the loss free case
  • 3.5 Transmission line reflections
  • 3.6 Time domain Reflectometry
  • 3.7 References
  • 3.8 Problems
  • Chapter 4: Crosstalk
  • 4.1 Mutual Inductance and Capacitance
  • 4.2 Coupled Wave Equations
  • 4.3 Coupled Line Analysis
  • 4.4 Modal Analysis
  • 4.5 Crosstalk Minimization
  • 4.6 Summary
  • 4.7 References
  • 4.8 Problems
  • Chapter 5: Non-ideal conductor models for transmission lines
  • 5.1 Signals propagating in an unbounded conductive media
  • 5.2 Classic conductor model for transmission lines
  • 5.3 Surface Roughness
  • 5.4 Transmission line parameters with a non-ideal conductor
  • 5.5 Problems
  • Chapter 6: Electrical properties of dielectrics
  • 6.1 Polarization of dielectrics
  • 6.2 Classification of dielectric materials
  • 6.3 Frequency dependent dielectric behavior
  • 6.4 Properties of a physical dielectric model
  • 6.5 The fiber-weave effect
  • 6.6 Environmental variation in dielectric behavior
  • 6.7 Transmission line parameters for lossy dielectrics and realistic conductors
  • 6.8 References
  • 6.9 Problems
  • Chapter 7: Differential signaling
  • 7.1 Removal of common mode noise
  • 7.2 Differential Crosstalk
  • 7.3 Virtual reference plane
  • 7.4 Propagation of Modal Voltages.
  • 7.5 Common terminology
  • 7.6 Drawbacks of differential signaling
  • 7.7 References
  • 7.8 Problems
  • Chapter 8: Mathematical Requirements of Physical Channels
  • 8.1 Frequency domain effects in time domain simulations
  • 8.2 Requirements for a physical Channel
  • 8.3 References
  • 8.4 Problems
  • Chapter 9: Network Analysis for Digital Engineers
  • 9.1 High frequency voltage and current waves
  • 9.2 Network Theory
  • 9.3 Properties of Physical S-parameters
  • 9.4 References
  • 9.5 Problems
  • Chapter 10: Topics in High-Speed Channel Modeling
  • 10.1 Creating a physical transmission line mode
  • 10.2 Non-Ideal Return Paths
  • 10.3 Vias
  • 10.4 References
  • 10.5 Problems
  • Chapter 11: I/O Circuits and Models
  • 11.1 Introduction
  • 11.2 Push-Pull Transmitters
  • 11.3 CMOS Receivers
  • 11.4 ESD Protection Circuits
  • 11.5 On-Chip Termination
  • 11.6 Bergeron Diagrams
  • 11.7 Open Drain Transmitters
  • 11.8 Differential Current Mode Transmitters
  • 11.9 Low Swing/Differential Receivers
  • 11.10 IBIS Models
  • 11.11 Summary
  • 11.12 References
  • 11.13 Problems
  • Chapter 12: Equalization
  • 12.1 Introduction
  • 12.2 Continuous Time Linear Equalizers
  • 12.3 Discrete Linear Equalizers
  • 12.4 Decision Feedback Equalization
  • 12.5 Summary
  • 12.6 References
  • 12.7 Problems
  • Chapter 13: Modeling and Budgeting of Timing Jitter and Noise
  • 13.1 The Eye Diagram
  • 13.2 Bit Error Rate
  • 13.3 Jitter Sources and Budgets
  • 13.4 Noise Sources and Budgets
  • 13.5 Peak Distortion Analysis Methods
  • 13.6 Summary
  • 13.7 References
  • 13.8 Problems
  • Chapter 14: System Analysis Using Response Surface Modeling
  • 14.1 Introduction
  • 14.2 Case Study: 10 Gb/s differential PCB interface
  • 14.3 RSM Construction by Least Squares Fitting
  • 14.4 Measures of Fit
  • 14.5 Significance Testing
  • 14.6 Confidence Intervals
  • 14.7 Sensitivity Analysis and Design Optimization
  • 14.8 Defect Rate Prediction Using Monte Carlo Simulation
  • 14.9 Additional RSM Considerations
  • 14.10 Summary.
  • 14.11 References
  • 14.12 Problems
  • Appendix A: Useful formulae, identities, units and constants
  • Appendix B: 4-port Conversions between T and S-parameters
  • Appendix C: Critical values of the F-statistic
  • Appendix D: Critical values of the t-statistic
  • Appendix E: Derivation of the internal inductance using the Hilbert Transform.