An ontological and epistemological perspective of fuzzy set theory /
Fuzzy set and logic theory suggest that all natural language linguistic expressions are imprecise and must be assessed as a matter of degree. But in general membership degree is an imprecise notion which requires that Type 2 membership degrees be considered in most applications related to human deci...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam ; Oxford :
Elsevier,
2006.
©2006 |
Edición: | 1st ed. |
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | OR_ocn162586688 | ||
003 | OCoLC | ||
005 | 20231017213018.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 070806s2006 ne a fob 001 0 eng d | ||
040 | |a OPELS |b eng |e pn |c OPELS |d OCLCG |d OCLCQ |d N$T |d YDXCP |d MERUC |d UBY |d E7B |d IDEBK |d TULIB |d OCLCQ |d OCLCF |d UMI |d DEBBG |d OCLCQ |d COO |d OCLCQ |d FEM |d OCLCQ |d STF |d D6H |d CEF |d OCLCQ |d WYU |d UAB |d LEAUB |d OL$ |d VT2 |d BWN |d VLY |d OCLCQ |d OCLCO |d COM |d OCLCQ | ||
016 | 7 | |a 013189569 |2 Uk | |
019 | |a 173137596 |a 441793019 |a 505121382 |a 648266009 |a 779919442 |a 901691717 |a 968046165 |a 969031536 |a 989422038 |a 1035653647 |a 1103263857 |a 1110275529 |a 1129364996 |a 1152985271 |a 1162253455 |a 1192335287 |a 1240536369 | ||
020 | |a 9780444518910 | ||
020 | |a 0444518916 | ||
020 | |a 9780080525716 |q (electronic bk.) | ||
020 | |a 0080525717 |q (electronic bk.) | ||
020 | |a 1281025437 | ||
020 | |a 9781281025432 | ||
020 | |a 9786611025434 | ||
020 | |a 661102543X | ||
029 | 1 | |a AU@ |b 000048129994 | |
029 | 1 | |a CHNEW |b 001006640 | |
029 | 1 | |a DEBBG |b BV036962350 | |
029 | 1 | |a DEBBG |b BV039830218 | |
029 | 1 | |a DEBBG |b BV042317347 | |
029 | 1 | |a DEBBG |b BV042487407 | |
029 | 1 | |a DEBSZ |b 275128091 | |
029 | 1 | |a DEBSZ |b 434828084 | |
029 | 1 | |a GBVCP |b 882841149 | |
029 | 1 | |a NZ1 |b 12433610 | |
029 | 1 | |a NZ1 |b 15192902 | |
035 | |a (OCoLC)162586688 |z (OCoLC)173137596 |z (OCoLC)441793019 |z (OCoLC)505121382 |z (OCoLC)648266009 |z (OCoLC)779919442 |z (OCoLC)901691717 |z (OCoLC)968046165 |z (OCoLC)969031536 |z (OCoLC)989422038 |z (OCoLC)1035653647 |z (OCoLC)1103263857 |z (OCoLC)1110275529 |z (OCoLC)1129364996 |z (OCoLC)1152985271 |z (OCoLC)1162253455 |z (OCoLC)1192335287 |z (OCoLC)1240536369 | ||
037 | |a 112483:112571 |b Elsevier Science & Technology |n http://www.sciencedirect.com | ||
050 | 4 | |a QA248.5 |b .T87 2006eb | |
072 | 7 | |a MAT |x 028000 |2 bisacsh | |
082 | 0 | 4 | |a 511.3223 |2 22 |
049 | |a UAMI | ||
100 | 1 | |a Turksen, I. Burhan, |d 1937- | |
245 | 1 | 3 | |a An ontological and epistemological perspective of fuzzy set theory / |c I. Burhan Türkş̜en. |
250 | |a 1st ed. | ||
260 | |a Amsterdam ; |a Oxford : |b Elsevier, |c 2006. | ||
264 | 4 | |c ©2006 | |
300 | |a 1 online resource (xxvii, 514 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file | ||
520 | |a Fuzzy set and logic theory suggest that all natural language linguistic expressions are imprecise and must be assessed as a matter of degree. But in general membership degree is an imprecise notion which requires that Type 2 membership degrees be considered in most applications related to human decision making schemas. Even if the membership functions are restricted to be Type1, their combinations generate an interval valued Type 2 membership. This is part of the general result that Classical equivalences breakdown in Fuzzy theory. Thus all classical formulas must be reassessed with an upper and lower expression that are generated by the breakdown of classical formulas. Key features: - Ontological grounding - Epistemological justification - Measurement of Membership - Breakdown of equivalences - FDCF is not equivalent to FCCF - Fuzzy Beliefs - Meta-Linguistic axioms - Ontological grounding - Epistemological justification - Measurement of Membership - Breakdown of equivalences - FDCF is not equivalent to FCCF - Fuzzy Beliefs - Meta-Linguistic axioms. | ||
505 | 0 | |a Table of Contents -- Preface -- Table of Contents -- 0. Foundation -- 1. Introduction -- 2. Computing with Words -- 3. Measurement of Membership -- 4. Elicitation Methods -- 5. Fuzzy Clustering Methods -- 6. Classes of Fuzzy Set and Logic Theories -- 7. Equivalences in Two-Valued Logic -- 8. Fuzzy-Valued Set and Two-Valued Logic -- 9. Containment of FDCF in FCCF -- 10. Consequences of D(0,1), V(0,1) Theory -- 11. Compensatory "And" -- 12. Belief, Plausibility and Probability Measures on Interval-Valued Type 2 Fuzzy Sets -- 13. Veristic Fuzzy Sets of Truthoods -- 14. Approximate Reasoning -- 15. Interval-Valued Type 2 GMP -- 16. A Theoretical Application of Interval-Valued Type 2 Representation -- 17. A Foundation for Computing with Words: Meta-Linguistic Axioms -- 18. Epilogue -- References -- Subject Index -- Author Index. | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
546 | |a English. | ||
590 | |a O'Reilly |b O'Reilly Online Learning: Academic/Public Library Edition | ||
650 | 0 | |a Fuzzy sets. | |
650 | 6 | |a Ensembles flous. | |
650 | 7 | |a MATHEMATICS |x Set Theory. |2 bisacsh | |
650 | 7 | |a Fuzzy sets. |2 fast |0 (OCoLC)fst00936812 | |
776 | 0 | 8 | |i Print version: |a Turksen, I. Burhan, 1937- |t Ontological and epistemological perspective of fuzzy set theory. |b 1st ed. |d Amsterdam ; Oxford : Elsevier, 2006 |z 0444518916 |z 9780444518910 |w (OCoLC)60320154 |
856 | 4 | 0 | |u https://learning.oreilly.com/library/view/~/9780444518910/?ar |z Texto completo (Requiere registro previo con correo institucional) |
938 | |a ebrary |b EBRY |n ebr10178575 | ||
938 | |a EBSCOhost |b EBSC |n 198978 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 102543 | ||
938 | |a YBP Library Services |b YANK |n 2614408 | ||
994 | |a 92 |b IZTAP |