Cargando…

An ontological and epistemological perspective of fuzzy set theory /

Fuzzy set and logic theory suggest that all natural language linguistic expressions are imprecise and must be assessed as a matter of degree. But in general membership degree is an imprecise notion which requires that Type 2 membership degrees be considered in most applications related to human deci...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Turksen, I. Burhan, 1937-
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam ; Oxford : Elsevier, 2006.
©2006
Edición:1st ed.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)

MARC

LEADER 00000cam a2200000 a 4500
001 OR_ocn162586688
003 OCoLC
005 20231017213018.0
006 m o d
007 cr cn|||||||||
008 070806s2006 ne a fob 001 0 eng d
040 |a OPELS  |b eng  |e pn  |c OPELS  |d OCLCG  |d OCLCQ  |d N$T  |d YDXCP  |d MERUC  |d UBY  |d E7B  |d IDEBK  |d TULIB  |d OCLCQ  |d OCLCF  |d UMI  |d DEBBG  |d OCLCQ  |d COO  |d OCLCQ  |d FEM  |d OCLCQ  |d STF  |d D6H  |d CEF  |d OCLCQ  |d WYU  |d UAB  |d LEAUB  |d OL$  |d VT2  |d BWN  |d VLY  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ 
016 7 |a 013189569  |2 Uk 
019 |a 173137596  |a 441793019  |a 505121382  |a 648266009  |a 779919442  |a 901691717  |a 968046165  |a 969031536  |a 989422038  |a 1035653647  |a 1103263857  |a 1110275529  |a 1129364996  |a 1152985271  |a 1162253455  |a 1192335287  |a 1240536369 
020 |a 9780444518910 
020 |a 0444518916 
020 |a 9780080525716  |q (electronic bk.) 
020 |a 0080525717  |q (electronic bk.) 
020 |a 1281025437 
020 |a 9781281025432 
020 |a 9786611025434 
020 |a 661102543X 
029 1 |a AU@  |b 000048129994 
029 1 |a CHNEW  |b 001006640 
029 1 |a DEBBG  |b BV036962350 
029 1 |a DEBBG  |b BV039830218 
029 1 |a DEBBG  |b BV042317347 
029 1 |a DEBBG  |b BV042487407 
029 1 |a DEBSZ  |b 275128091 
029 1 |a DEBSZ  |b 434828084 
029 1 |a GBVCP  |b 882841149 
029 1 |a NZ1  |b 12433610 
029 1 |a NZ1  |b 15192902 
035 |a (OCoLC)162586688  |z (OCoLC)173137596  |z (OCoLC)441793019  |z (OCoLC)505121382  |z (OCoLC)648266009  |z (OCoLC)779919442  |z (OCoLC)901691717  |z (OCoLC)968046165  |z (OCoLC)969031536  |z (OCoLC)989422038  |z (OCoLC)1035653647  |z (OCoLC)1103263857  |z (OCoLC)1110275529  |z (OCoLC)1129364996  |z (OCoLC)1152985271  |z (OCoLC)1162253455  |z (OCoLC)1192335287  |z (OCoLC)1240536369 
037 |a 112483:112571  |b Elsevier Science & Technology  |n http://www.sciencedirect.com 
050 4 |a QA248.5  |b .T87 2006eb 
072 7 |a MAT  |x 028000  |2 bisacsh 
082 0 4 |a 511.3223  |2 22 
049 |a UAMI 
100 1 |a Turksen, I. Burhan,  |d 1937- 
245 1 3 |a An ontological and epistemological perspective of fuzzy set theory /  |c I. Burhan Türkş̜en. 
250 |a 1st ed. 
260 |a Amsterdam ;  |a Oxford :  |b Elsevier,  |c 2006. 
264 4 |c ©2006 
300 |a 1 online resource (xxvii, 514 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
520 |a Fuzzy set and logic theory suggest that all natural language linguistic expressions are imprecise and must be assessed as a matter of degree. But in general membership degree is an imprecise notion which requires that Type 2 membership degrees be considered in most applications related to human decision making schemas. Even if the membership functions are restricted to be Type1, their combinations generate an interval valued Type 2 membership. This is part of the general result that Classical equivalences breakdown in Fuzzy theory. Thus all classical formulas must be reassessed with an upper and lower expression that are generated by the breakdown of classical formulas. Key features: - Ontological grounding - Epistemological justification - Measurement of Membership - Breakdown of equivalences - FDCF is not equivalent to FCCF - Fuzzy Beliefs - Meta-Linguistic axioms - Ontological grounding - Epistemological justification - Measurement of Membership - Breakdown of equivalences - FDCF is not equivalent to FCCF - Fuzzy Beliefs - Meta-Linguistic axioms. 
505 0 |a Table of Contents -- Preface -- Table of Contents -- 0. Foundation -- 1. Introduction -- 2. Computing with Words -- 3. Measurement of Membership -- 4. Elicitation Methods -- 5. Fuzzy Clustering Methods -- 6. Classes of Fuzzy Set and Logic Theories -- 7. Equivalences in Two-Valued Logic -- 8. Fuzzy-Valued Set and Two-Valued Logic -- 9. Containment of FDCF in FCCF -- 10. Consequences of D(0,1), V(0,1) Theory -- 11. Compensatory "And" -- 12. Belief, Plausibility and Probability Measures on Interval-Valued Type 2 Fuzzy Sets -- 13. Veristic Fuzzy Sets of Truthoods -- 14. Approximate Reasoning -- 15. Interval-Valued Type 2 GMP -- 16. A Theoretical Application of Interval-Valued Type 2 Representation -- 17. A Foundation for Computing with Words: Meta-Linguistic Axioms -- 18. Epilogue -- References -- Subject Index -- Author Index. 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
546 |a English. 
590 |a O'Reilly  |b O'Reilly Online Learning: Academic/Public Library Edition 
650 0 |a Fuzzy sets. 
650 6 |a Ensembles flous. 
650 7 |a MATHEMATICS  |x Set Theory.  |2 bisacsh 
650 7 |a Fuzzy sets.  |2 fast  |0 (OCoLC)fst00936812 
776 0 8 |i Print version:  |a Turksen, I. Burhan, 1937-  |t Ontological and epistemological perspective of fuzzy set theory.  |b 1st ed.  |d Amsterdam ; Oxford : Elsevier, 2006  |z 0444518916  |z 9780444518910  |w (OCoLC)60320154 
856 4 0 |u https://learning.oreilly.com/library/view/~/9780444518910/?ar  |z Texto completo (Requiere registro previo con correo institucional) 
938 |a ebrary  |b EBRY  |n ebr10178575 
938 |a EBSCOhost  |b EBSC  |n 198978 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n 102543 
938 |a YBP Library Services  |b YANK  |n 2614408 
994 |a 92  |b IZTAP