Data preparation for analytics using SAS /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cary, NC :
SAS Institute,
2006.
|
Colección: | SAS Press series.
|
Temas: | |
Acceso en línea: | Texto completo (Requiere registro previo con correo institucional) |
Tabla de Contenidos:
- pt. 1. Data preparation: business point of view
- ch. 1. Analytic business questions
- Ch. 2. Characteristics of analytic business questions
- Ch. 3. Characteristics of data sources
- Ch. 4. Different points of view on analytic data preparation
- pt. 2. Data structures and data modeling
- Ch. 5. The origin of data
- Ch. 6. Data models
- Ch. 7. Analysis subjects and multiple observations
- Ch. 8. The one row-per-subject data mart
- Ch. 9. The multiple-rows-per-subject data mart
- Ch. 10. Data structures for longitudinal analysis
- Ch. 11. Considerations for data marts
- Ch. 11. Considerations for predictive modeling
- pt. 3. Data mart coding and content
- Ch. 13. Accessing data
- Ch. 14. Transposing one- and multiple-rows-per-subject data structures
- Ch. 15. Transposing longitudinal data
- Ch. 16. Transformations of interval-scaled variables
- Ch. 17. Transformations of categorical variables
- Ch. 18. Multiple interval-scaled observations per subject
- Ch. 19. Multiple catagorical observations per subject
- Ch. 20. Coding for predictive modeling
- Ch. 21. Data preparation for multiple-rows-per-subject and longitudinal data marts
- pt. 4. Sampling, scoring, and automation
- Ch. 22. Sampling
- Ch. 23. Scoring and automation
- Ch 24. Do's and don'ts when building data marts
- pt. 5. Case studies.