Cargando…

Microsoft Excel data analysis and business modeling /

Well known consultant, statistician, and business professor Wayne Winston teaches by example the best ways to use Microsoft Excel for data analysis, modeling, and decision making within real-world business scenarios.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Winston, Wayne L.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Redmond, Wash. : Microsoft Press, ©2004.
Temas:
Acceso en línea:Texto completo (Requiere registro previo con correo institucional)
Tabla de Contenidos:
  • 1. Range Names
  • 2. Natural Language Range Names
  • 3. Lookup Functions
  • 4. The INDEX Function
  • 5. The MATCH Function
  • 6. Text Functions
  • 7. Dates and Date Functions
  • 8. Evaluating Investments with Net Present Value Criteria
  • 9. Internal Rate of Return
  • 10. Functions for Personal Financial Decisions: The PV, FV, PMT, PPMT, and IPMT Functions
  • 11. Circular References
  • 12. IF Statements
  • 13. The Paste Special Command
  • 14. The Auditing Tool
  • 15. Sensitivity Analysis with Data Tables
  • 16. The Goal Seek Command
  • 17. Using the Scenario Manager for Sensitivity Analysis
  • 18. Creating and Using Spinners for Sensitivity Analysis
  • 19. The COUNTIF, COUNT, COUNTA, and COUNTBLANK Functions
  • 20. The SUMIF Function
  • 21. The OFFSET Function
  • 22. The INDIRECT Function
  • 23. Conditional Formatting
  • 24. An Introduction to Optimization with the Excel Solver
  • 25. Using Solver to Determine the Optimal Product Mix
  • 26. Using Solver to Solve Transportation or Distribution Problems
  • 27. Using Solver to Schedule Your Workforce
  • 28. Using Solver for Capital Budgeting
  • 29. Using Solver for Financial Planning
  • 30. Using Solver to Rate Sports Teams
  • 31. Importing Text or Microsoft Word Data into Excel
  • 32. Importing Data from the Web into Excel
  • 33. Validating Data
  • 34. Summarizing Data with Histograms
  • 35. Summarizing Data with Descriptive Statistics
  • 36. Using PivotTables to Describe Data
  • 37. Summarizing Data with Database Statistical Functions
  • 38. Filtering Data
  • 39. Consolidating Data
  • 40. Creating Subtotals
  • 41. Estimating Straight Line Relationships
  • 42. Modeling Exponential Growth
  • 43. The Power Curve
  • 44. Using Correlations to Summarize Relationships
  • 45. Introduction to Multiple Regression
  • 46. Incorporating Qualitative Factors into Multiple Regression
  • 47. Modeling Nonlinearities and Interactions
  • 48. Analysis of Variance: One-Way ANOVA
  • 49. Randomized Blocks and Two-Way ANOVA
  • 50. Using Moving Averages to Understand Time Series
  • 51. Forecasting with Moving Averages
  • 52. Forecasting in the Presence of Special Events
  • 53. An Introduction to Random Variables
  • 54. The Binomial and Hypergeometric Random Variables
  • 55. The Poisson and Exponential Random Variable
  • 56. The Normal Random Variable
  • 57. Weibull and Beta Distributions: Modeling Machine Life and Duration of a Project
  • 58. Introduction to Monte Carlo Simulation
  • 59. Calculating an Optimal Bid
  • 60. Simulating Stock Prices and Asset Allocation Modeling
  • 61. Fun and Games: Simulating Gambling and Sporting Event Probabilities
  • 62. Using Resampling to Analyze Data
  • 63. Pricing Stock Options
  • 64. Determining Customer Value
  • 65. The Economic Order Quantity Inventory Model
  • 66. Determining the Reorder Point: How Low Should I Let My Inventory Level Go Before I Reorder?
  • 67. Queuing Theory: The Mathematics of Waiting in Line
  • 68. Estimating a Demand Curve
  • 69. Pricing Products with Tie-ins
  • 70. Pricing Products Using Subjectively Determined Demand
  • 71. Nonlinear Pricing
  • 72. Array Formulas and Functions
  • 73. Picking Your Fantasy Football Team.