Cargando…

Schaum's Outline of Electromagnetics, Fifth Edition /

More than 40 million students have trusted Schaum?s to help them succeed in the classroom and on exams. Schaum?s is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hund...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Nahvi, Mahmood (Autor), Edminister, Joseph (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2019].
Edición:5th edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover Page
  • Halftitle Page
  • Title Page
  • Copyright Page
  • Preface
  • Contents
  • CHAPTER 1 The Subject of Electromagnetics
  • 1.1 Historical Background
  • 1.2 Objectives of the Chapter
  • 1.3 Electric Charge
  • 1.4 Units
  • 1.5 Vectors
  • 1.6 Electrical Force, Field, Flux, and Potential
  • 1.7 Magnetic Force, Field, Flux, and Potential
  • 1.8 Electromagnetic Induction
  • 1.9 Mathematical Operators and Identities
  • 1.10 Maxwell?s Equations
  • 1.11 Electromagnetic Waves
  • 1.12 Trajectory of a Sinusoidal Motion in Two Dimensions
  • 1.13 Wave Polarization
  • 1.14 Electromagnetic Spectrum
  • 1.15 Transmission Lines
  • CHAPTER 2 Vector Analysis
  • 2.1 Introduction
  • 2.2 Vector Notation
  • 2.3 Vector Functions
  • 2.4 Vector Algebra
  • 2.5 Coordinate Systems
  • 2.6 Differential Volume, Surface, and Line Elements
  • CHAPTER 3 Electric Field
  • 3.1 Introduction
  • 3.2 Coulomb?s Law in Vector Form
  • 3.3 Superposition
  • 3.4 Electric Field Intensity
  • 3.5 Charge Distributions
  • 3.6 Standard Charge Configurations
  • CHAPTER 4 Electric Flux
  • 4.1 Net Charge in a Region
  • 4.2 Electric Flux and Flux Density
  • 4.3 Gauss?s Law
  • 4.4 Relation between Flux Density and Electric Field Intensity
  • 4.5 Special Gaussian Surfaces
  • CHAPTER 5 Gradient, Divergence, Curl, and Laplacian
  • 5.1 Introduction
  • 5.2 Gradient
  • 5.3 The Del Operator
  • 5.4 The Del Operator and Gradient
  • 5.5 Divergence
  • 5.6 Expressions for Divergence in Coordinate Systems
  • 5.7 The Del Operator and Divergence
  • 5.8 Divergence of D
  • 5.9 The Divergence Theorem
  • 5.10 Curl
  • 5.11 Laplacian
  • 5.12 Summary of Vector Operations
  • CHAPTER 6 Electrostatics: Work, Energy, and Potential
  • 6.1 Work Done in Moving a Point Charge
  • 6.2 Conservative Property of the Electrostatic Field
  • 6.3 Electric Potential between Two Points
  • 6.4 Potential of a Point Charge
  • 6.5 Potential of a Charge Distribution
  • 6.6 Relationship between E and V
  • 6.7 Energy in Static Electric Fields
  • CHAPTER 7 Electric Current
  • 7.1 Introduction
  • 7.2 Charges in Motion
  • 7.3 Convection Current Density J
  • 7.4 Conduction Current Density J
  • 7.5 Conductivity s
  • 7.6 Current I
  • 7.7 Resistance R
  • 7.8 Current Sheet Density K
  • 7.9 Continuity of Current
  • 7.10 Conductor-Dielectric Boundary Conditions
  • CHAPTER 8 Capacitance and Dielectric Materials
  • 8.1 Polarization P and Relative Permittivity ?r
  • 8.2 Capacitance
  • 8.3 Multiple-Dielectric Capacitors
  • 8.4 Energy Stored in a Capacitor
  • 8.5 Fixed-Voltage D and E
  • 8.6 Fixed-Charge D and E
  • 8.7 Boundary Conditions at the Interface of Two Dielectrics
  • 8.8 Method of Images
  • CHAPTER 9 Laplace?s Equation
  • 9.1 Introduction
  • 9.2 Poisson?s Equation and Laplace?s Equation
  • 9.3 Explicit Forms of Laplace?s Equation
  • 9.4 Uniqueness Theorem
  • 9.5 Mean Value and Maximum Value Theorems
  • 9.6 Cartesian Solution in One Variable
  • 9.7 Cartesian Product Solution
  • 9.8 Cylindrical Product Solution
  • 9.9 Spherical Product Solution
  • CHAPTER 10 Magnetic Field and Boundary Conditions
  • 10.1 Introduction
  • 10.2 Biot-Savart Law
  • 10.3 Amp?re?s Law
  • 10.4 Relationship of J and H
  • 10.5 Magnetic Flux Density B
  • 10.6 Boundary Relations for Magnetic Fields
  • 10.7 Current Sheet at the Boundary
  • 10.8 Summary of Boundary Conditions
  • 10.9 Vector Magnetic Potential A
  • 10.10 Stokes? Theorem
  • CHAPTER 11 Forces and Torques in Magnetic Fields
  • 11.1 Magnetic Force on Particles
  • 11.2 Electric and Magnetic Fields Combined
  • 11.3 Magnetic Force on a Current Element
  • 11.4 Work and Power
  • 11.5 Torque
  • 11.6 Magnetic Moment of a Planar Coil
  • CHAPTER 12 Inductance and Magnetic Circuits
  • 12.1 Inductance
  • 12.2 Standard Conductor Configurations
  • 12.3 Faraday?s Law and Self-Inductance
  • 12.4 Internal Inductance
  • 12.5 Mutual Inductance
  • 12.6 Magnetic Circuits
  • 12.7 The B-H Curve
  • 12.8 Amp?re?s Law for Magnetic Circuits
  • 12.9 Cores with Air Gaps
  • 12.10 Multiple Coils
  • 12.11 Parallel Magnetic Circuits
  • CHAPTER 13 Time-Varying Fields and Maxwell?s Equations
  • 13.1 Introduction
  • 13.2 Maxwell?s Equations for Static Fields
  • 13.3 Faraday?s Law and Lenz?s Law
  • 13.4 Conductors? Motion in Time-Independent Fields
  • 13.5 Conductors? Motion in Time-Dependent Fields
  • 13.6 Displacement Current
  • 13.7 Ratio of Jc to JD
  • 13.8 Maxwell?s Equations for Time-Varying Fields
  • CHAPTER 14 Electromagnetic Waves
  • 14.1 Introduction
  • 14.2 Wave Equations
  • 14.3 Solutions in Cartesian Coordinates
  • 14.4 Plane Waves
  • 14.5 Solutions for Partially Conducting Media
  • 14.6 Solutions for Perfect Dielectrics
  • 14.7 Solutions for Good Conductors; Skin Depth
  • 14.8 Interface Conditions at Normal Incidence
  • 14.9 Oblique Incidence and Snell?s Laws
  • 14.10 Perpendicular Polarization
  • 14.11 Parallel Polarization
  • 14.12 Standing Waves
  • 14.13 Power and the Poynting Vector
  • CHAPTER 15 Transmission Lines
  • 15.1 Introduction
  • 15.2 Distributed Parameters
  • 15.3 Incremental Models
  • 15.4 Transmission Line Equation
  • 15.5 Impedance, Admittance, and Other Features of Interest
  • 15.6 Sinusoidal Steady-State Excitation
  • 15.7 Lossless Lines
  • 15.8 The Smith Chart
  • 15.9 Admittance Plane
  • 15.10 Quarter-Wave Transformer
  • 15.11 Impedance Matching
  • 15.12 Single-Stub Matching
  • 15.13 Double-Stub Matching
  • 15.14 Impedance Measurement
  • 15.15 Transients in Lossless Lines
  • CHAPTER 16 Waveguides
  • 16.1 Introduction
  • 16.2 Transverse and Axial Fields
  • 16.3 TE and TM Modes; Wave Impedances
  • 16.4 Determination of the Axial Fields
  • 16.5 Mode Cutoff Frequencies
  • 16.6 Dominant Mode
  • 16.7 Power Transmitted in a Lossless Waveguide
  • 16.8 Power Dissipation in a Lossy Waveguide
  • CHAPTER 17 Antennas
  • 17.1 Introduction
  • 17.2 Current Source and the E and H Fields
  • 17.3 Electric (Hertzian) Dipole Antenna
  • 17.4 Antenna Parameters
  • 17.5 Small Circular-Loop Antenna
  • 17.6 Finite-Length Dipole
  • 17.7 Monopole Antenna
  • 17.8 Self- and Mutual Impedances
  • 17.9 The Receiving Antenna
  • 17.10 Linear Arrays
  • 17.11 Reflectors
  • CHAPTER 18 Propagation of Electromagnetic Waves in the Atmosphere
  • 18.1 Introduction and Summary
  • 18.2 Plane Waves in Homogeneous Media
  • 18.3 Propagation Parameters
  • 18.4 Complex Dielectric Constant
  • 18.5 Power Equation
  • 18.6 Refraction
  • 18.7 Reflection, Diffraction, and Scattering
  • 18.8 The Atmosphere
  • 18.9 Atmospheric Effects on Propagation of Radio Waves
  • 18.10 Attenuation by Gaseous Absorption
  • 18.11 Attenuation by Hydrometeors
  • 18.12 Ground and Sky Waves
  • 18.13 Models of the Troposphere
  • 18.14 Tropospheric Refractivity
  • 18.15 Tropospheric Excess Delay
  • 18.16 Bending Effect of Tropospheric Refraction
  • 18.17 Conductivity, Permittivity, and Refraction Index of the Ionosphere
  • 18.18 Satellite Microwave Ranging
  • 18.19 Ionospheric Range Error
  • 18.20 Tropospheric Range Error
  • APPENDIX
  • INDEX
  • IBC.