Cargando…

Digital Filters : Analysis, Design, and Signal Processing Applications /

Up-to-date digital filter design principles, techniques, and applications. Written by a Life Fellow of the IEEE, this comprehensive textbook teaches digital filter design, realization, and implementation and provides detailed illustrations and real-world applications of digital filters to signal pro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Antoniou, Andreas (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2018].
Edición:2nd edition.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover
  • Title Page
  • Copyright Page
  • Dedication
  • About the Author
  • Contents
  • Preface
  • 1 Introduction to Digital Signal Processing
  • 1.1 Introduction
  • 1.2 Signals
  • 1.3 Frequency-Domain Representation
  • 1.4 Notation
  • 1.5 Signal Processing
  • 1.6 Analog Filters
  • 1.7 Applications of Analog Filters
  • 1.8 Digital Filters
  • 1.9 Three DSP Applications
  • 2 Discrete-Time Systems
  • 2.1 Introduction
  • 2.2 Basic System Properties
  • 2.3 Characterization of Discrete-Time Systems
  • 2.4 Discrete-Time System Networks
  • 2.5 Introduction to Time-Domain Analysis
  • 2.6 Convolution Summation
  • 2.7 Stability
  • 2.8 State-Space Representation
  • 2.9 Problems
  • 3 The Fourier Series and Transform
  • 3.1 Introduction
  • 3.2 Fourier Series
  • 3.3 Fourier Transform
  • 3.4 Interrelation between the Fourier Series and the Fourier Transform
  • 3.5 Poisson?s Summation Formula
  • 3.6 Laplace Transform
  • 3.7 Problems
  • 4 The Z Transform
  • 4.1 Introduction
  • 4.2 Definition of Z Transform
  • 4.3 Convergence Properties
  • 4.4 The Z Transform as a Laurent Series
  • 4.5 Inverse Z Transform
  • 4.6 Additional Theorems and Properties
  • 4.7 Z Transforms of Elementary Discrete-Time Signals
  • 4.8 Z-Transform Inversion Techniques
  • 4.9 Spectral Representation of Discrete-Time Signals
  • 4.10 Problems
  • 5 Application of Transform Theory to Systems
  • 5.1 Introduction
  • 5.2 The Discrete-Time Transfer Function
  • 5.3 Stability
  • 5.4 Time-Domain Analysis
  • 5.5 Frequency-Domain Analysis
  • 5.6 Transfer Functions for Digital Filters
  • 5.7 Amplitude and Delay Distortion
  • 5.8 Continuous-Time Systems
  • 5.9 Problems
  • 6 The Sampling Process
  • 6.1 Introduction
  • 6.2 Impulse-Modulated Signals
  • 6.3 The Sampling Theorem
  • 6.4 Aliasing
  • 6.5 Graphical Representation of Interrelations
  • 6.6 Processing of Continuous-Time Signals Using Digital Filters
  • 6.7 Practical A/D and D/A Converters
  • 6.8 Problems
  • 7 The Discrete Fourier Transform
  • 7.1 Introduction
  • 7.2 Definition
  • 7.3 Inverse DFT
  • 7.4 Properties
  • 7.5 Interrelation between the DFT and the Z Transform
  • 7.6 Interrelation between the DFT and the CFT
  • 7.7 Interrelation between the DFT and the Fourier Series
  • 7.8 Simplified Notation
  • 7.9 Periodic Convolutions
  • 7.10 Fast Fourier-Transform Algorithms
  • 7.11 Application of the FFT Approach to Signal Processing
  • 7.12 Problems
  • 8 The Window Technique
  • 8.1 Introduction
  • 8.2 Basic Principles
  • 8.3 Discrete-Time Windows
  • 8.4 Problems
  • 9 Realization of Digital Filters
  • 9.1 Introduction
  • 9.2 Realization
  • 9.3 Implementation
  • 9.4 Problems
  • 10 Design of Nonrecursive Filters
  • 10.1 Introduction
  • 10.2 Properties of Constant-Delay Nonrecursive Filters
  • 10.3 Design Using the Fourier Series
  • 10.4 Use of Window Technique
  • 10.5 Prescribed Filter Specifications
  • 10.6 Design Based on Numerical-Analysis Formulas
  • 10.7 Problems
  • 11 Approximations for Analog Filters
  • 11.1 Introduction
  • 11.2 Basic Concepts
  • 11.3 Butterworth Approximation
  • 11.4 Chebyshev Approximation
  • 11.5 Inverse-Chebyshev Approximation
  • 11.6 Elliptic Approximation
  • 11.7 Bessel-Thomson Approximation
  • 11.8 Transformations
  • 11.9 Problems
  • 12 Design of Recursive Filters
  • 12.1 Introduction
  • 12.2 Realizability Constraints.
  • 12.3 Invariant Impulse-Response Method
  • 12.4 Modified Invariant Impulse-Response Method
  • 12.5 Matched-Z Transformation Method
  • 12.6 Bilinear-Transformation Method
  • 12.7 Digital-Filter Transformations
  • 12.8 Comparison between Recursive and Nonrecursive Designs
  • 12.9 Problems
  • 13 Recursive Filters Satisfying Prescribed Specifications
  • 13.1 Introduction
  • 13.2 Design Procedure
  • 13.3 Design Formulas
  • 13.4 Design Using the Formulas and Tables
  • 13.5 Constant Group Delay
  • 13.6 Amplitude-Response Equalization
  • 13.7 Problems
  • 14 Effects of Finite Word Length in Digital Filters
  • 14.1 Introduction
  • 14.2 Number Representation
  • 14.3 Coefficient Quantization
  • 14.4 Low-Sensitivity Structures
  • 14.5 Product Quantization
  • 14.6 Signal Scaling
  • 14.7 Minimization of Output Roundoff Noise
  • 14.8 Limit-Cycle Oscillations
  • 14.9 Problems
  • 15 Design of Nonrecursive Filters Using Optimization Methods
  • 15.1 Introduction
  • 15.2 Problem Formulation
  • 15.3 Remez Exchange Algorithm
  • 15.4 Improved Search Methods
  • 15.5 Efficient Remez Exchange Algorithm
  • 15.6 Gradient Information
  • 15.7 Prescribed Specifications
  • 15.8 Generalization
  • 15.9 Digital Differentiators
  • 15.10 Arbitrary Amplitude Responses
  • 15.11 Multiband Filters
  • 15.12 Problems
  • 16 Design of Recursive Filters Using Unconstrained Optimization
  • 16.1 Introduction
  • 16.2 Problem Formulation
  • 16.3 Newton?s Method
  • 16.4 Quasi-Newton Algorithms
  • 16.5 Minimax Algorithms
  • 16.6 Improved Minimax Algorithms
  • 16.7 Design of Recursive Filters
  • 16.8 Design of Recursive Delay Equalizers
  • 16.9 Problems
  • 17 Design of Recursive Filters Using Constrained Optimization
  • 17.1 Introduction
  • 17.2 Design Problem
  • 17.3 Constrained Optimization Problem
  • 17.4 Design Procedure
  • 17.5 Alternative Initialization Approaches
  • 17.6 Comparison of Recursive versus Nonrecursive Digital Filters
  • 17.7 Problems
  • 18 Wave Digital Filters
  • 18.1 Introduction
  • 18.2 Sensitivity Considerations
  • 18.3 Wave Network Characterization
  • 18.4 Element Realizations
  • 18.5 Lattice Wave Digital Filters
  • 18.6 Ladder Wave Digital Filters
  • 18.7 Filters Satisfying Prescribed Specifications
  • 18.8 Frequency-Domain Analysis
  • 18.9 Scaling
  • 18.10 Elimination of Limit-Cycle Oscillations
  • 18.11 Related Synthesis Methods
  • 18.12 A Cascade Synthesis Based on the Wave Characterization
  • 18.13 Choice of Structure
  • 18.14 Problems
  • 19 Signal Processing Applications
  • 19.1 Introduction
  • 19.2 Sampling-Frequency Conversion
  • 19.3 Quadrature-Mirror-Image Filter Banks
  • 19.4 Hilbert Transformers
  • 19.5 Two-Dimensional Digital Filters
  • 19.6 Adaptive Digital Filters
  • 19.7 Problems
  • Appendix: Complex Analysis
  • A.1 Introduction
  • A.2 Complex Numbers
  • A.3 Functions of a Complex Variable
  • A.4 Basic Principles of Complex Analysis
  • A.5 Series
  • A.6 Laurent Theorem
  • A.7 Residue Theorem
  • A.8 Analytic Continuation
  • A.9 Conformal Transformations
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Z.