Cargando…

Nanoelectronic mixed-signal system design /

The only single-volume text to cover both the classical and emerging nanoelectronic technologies being used in mixed-signal design addresses digital, analog, and memory components.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mohanty, Saraju P. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2015]
Edición:First edition.
Colección:McGraw-Hill's AccessEngineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • A. Dedication
  • B. About the author
  • C. Preface
  • D. Acknowledgments
  • E. Acronyms
  • F. Notation
  • 1. Opportunities and challenges of nanoscale technology and systems
  • Introduction
  • Mixed-signal circuits and systems
  • Nanoscale cmos circuit technology
  • Power consumption and leakage dissipation issues in ams-socs
  • Parasitics issue
  • Nanoscale circuit process variation issues
  • The temperature variation issue
  • Challenges in nanoscale cmos ams-soc design
  • Tools for mixed-signal circuit design
  • Questions
  • References
  • 2. Emerging systems designed as analog/mixed-signal system-on-chips
  • Introduction
  • Atomic force microscope
  • Biosensor systems
  • Blu-ray player
  • Drug-delivery nano-electro-mechanical systems
  • Digital video recorder
  • Electroencephalogram system
  • Gps navigation device
  • Gpu-cpu hybrid system
  • Networked media tank
  • Net-centric multimedia processor
  • Radiation detection system
  • Radio frequency identification chip
  • Secure digital camera
  • Set-top box
  • Slate personal computer
  • Smart mobile phone
  • Software-defined radio
  • Tv tuner card for pcs
  • Universal remote control
  • Questions
  • References
  • 3. Nanoelectronics issues in design for excellence
  • Introduction
  • Design for excellence
  • Different types of nanoelectronic devices
  • Nanomanufacturing: the origin and source of process variations
  • The issue of process variation
  • The yield issue
  • The power issue in nanoelectronic circuits
  • The issue of parasitics in nanoelectronic circuits
  • The thermal issue
  • The reliability issue
  • The trust issue
  • Questions
  • References
  • 4. Phase-locked loop component circuits
  • Introduction
  • Phase-locked loop system types
  • Phase-locked loop system: a broad overview
  • Oscillator circuits
  • Ring oscillators
  • Current-starved voltage controlled oscillators
  • Lc-tank voltage-controlled oscillator
  • Relaxation oscillators
  • Phase-frequency detectors
  • Charge pumps
  • Loop filters
  • Frequency dividers
  • Design and characterization of a 180-nm cmos pll
  • All digital phase-locked loop
  • Delay-locked loop
  • Questions
  • References
  • 5. Electronic signal converter circuits
  • Introduction
  • Types of electronic signal converters
  • Selected adc architectures: brief overview
  • Selected dac architectures: brief overview
  • Characteristics for data converters
  • A 90-nm cmos-based flash adc
  • A 45-nm cmos-based flash adc
  • Single-electron-based adc
  • Organic thin-film transistor-based adcs
  • Sigma-delta modulator-based adc
  • Sigma-delta modulator-based digital-to-analog converter
  • Single electron transistor-based digital-to-analog converter
  • Questions
  • References
  • 6. Sensor circuits and systems
  • Introduction
  • Nanoelectronics-based biosensors
  • Thermal sensors for mixed-signal circuits and systems
  • Solar cells
  • Piezoelectric sensors
  • Image sensors
  • Nanoelectronics-based gas sensors
  • Body sensors
  • Epileptic seizure sensors
  • Humidity sensors
  • Motion sensors
  • Sense amplifiers
  • Questions
  • References.
  • 7. Memory in the ams-socs
  • Introduction
  • Static random-access memory
  • Dynamic random-access memory
  • Twin-transistor random-access memory
  • Thyristor random-access memory
  • Read-only memory
  • Flash memory
  • Resistive random-access memory
  • Magnetic or magnetoresistive random-access memory
  • Phase-change ram
  • Questions
  • References
  • 8. Mixed-signal circuit and system design flow
  • Introduction
  • Ams-soc: a complete design perspective
  • Integrated circuit design flow: top-down versus bottom-up
  • Analog circuit design flow
  • Digital circuit design flow
  • Analog and mixed-signal circuit design flow
  • Design flow using commercial electronic design automation tools
  • Design flow using free or open-source eda tools
  • Comprehensive design flows
  • Process design kit and libraries
  • Eda tool installation
  • Questions
  • References
  • 9. Mixed-signal circuit and system simulation
  • Introduction
  • Simulation types and languages for circuits and systems
  • Behavioral simulation using matlab?
  • Simulink?-or simscape?-based simulations
  • Circuit-level and/or device-level analog simulations
  • Verilog-a-based analog simulation
  • Simulations of digital circuits or systems
  • Mixed-signal hdl-based simulation
  • Mixed-mode circuit-level simulations
  • Questions
  • References
  • 10. Power-, parasitic-, and thermal-aware ams-soc design methodologies
  • Introduction
  • Power dissipation: key design constraint
  • Different energy or power reduction techniques for ams-soc
  • Presilicon power reduction techniques
  • Hardware-based postsilicon power reduction techniques
  • Dynamic power reduction techniques
  • Subthreshold leakage reduction techniques
  • Gate-oxide leakage reduction techniques
  • Parasitics: brief overview
  • The effects of parasitics on integrated circuits
  • Modeling and extraction of parasitics
  • Design flows for parasitic-aware circuit optimization
  • Temperature or thermal issue: an overview
  • Thermal modeling
  • Thermal analysis or simulation techniques
  • Temperature monitoring or sensing
  • Temperature control or management
  • Thermal-aware circuit optimization
  • Thermal-aware digital design flows
  • Thermal-aware register-transfer-level optimization
  • Thermal-aware system-level design
  • Questions
  • References
  • 11. Variability-aware ams-soc design methodologies
  • Introduction
  • Methods for variability analysis
  • Tool setup for statistical analysis
  • Methods for variability-aware design optimization
  • Variability-aware design of active pixel sensor
  • Variability-aware design of nanoscale vco circuits
  • Variability-aware design of the sram
  • Register-transfer-level methods for variability-aware digital circuits
  • System-level methods for variability-aware digital design
  • An adaptive body bias method for dynamic process variation compensation
  • Parametric variation effect mitigation in clock networks
  • Statistical methods for yield analysis
  • Questions
  • References
  • 12. Metamodel-based fast ams-soc design methodologies
  • Introduction
  • Metamodel: an overview
  • Metamodel-based ultrafast design flow
  • Polynomial-based metamodeling
  • Kriging-based metamodeling
  • Neural network?based metamodeling
  • Ultrafast process variations analysis using metamodels
  • Polynomial-metamodel-based ultrafast design optimization
  • Neural network metamodel-based ultrafast design optimization
  • Kriging metamodel-based ultrafast design optimization
  • Questions
  • References.