Cargando…

Formulas for structural dynamics : tables, graphs, and solutions /

The objective of this text is to provide an up to date reference source of known solutions to a wide range of vibration problems found in beams, arches and frames. The solutions offered apply to bridges, highways, buildings, and tunnels.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karnovskii, I. A., (Igor Alekseevich) (Autor)
Otros Autores: Lebed, Olga I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2001]
Edición:First edition.
Colección:McGraw-Hill's AccessEngineering.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Transverse Vibration Equations
  • Average values and resolving equations
  • Fundamental theories and approaches
  • Analysis Methods
  • Reciprocal theorems
  • Displacement computation techniques
  • Analysis methods
  • Fundamental Equations of Classical Beam Theory
  • Mathematical models for transversal vibrations of uniform beams
  • Boundary conditions
  • Compatibility conditions
  • Energy expressions
  • Properties of eigenfunctions
  • Orthogonal eigenfunctions in interval z[subscript 1]
  • z[subscript 2]
  • Mechanical models of elastic systems
  • Models of materials
  • Mechanical impedance of boundary conditions
  • Fundamental functions of the vibrating beams
  • Special Functions for the Dynamical Calculation of Beams and Frames
  • Krylov-Duncan functions
  • Dynamical reactions of massless elements with one lumped mass
  • Dynamical reactions of beams with distributed masses
  • Dynamical reactions of beams with distributed masses and one lumped mass
  • Frequency functions (Hohenemser-Prager's functions)
  • Displacement influence functions
  • Bernoulli-Euler Uniform Beams with Classical Boundary Conditions
  • Classical methods of analysis
  • One-span beams
  • One-span beams with overhang
  • Fundamental integrals
  • Love and Bernoulli-Euler beams, frequency equations and numerical results
  • Bernoulli-Euler Uniform One-Span Beams with Elastic Supports
  • Beams with elastic supports at both ends
  • Beams with a translational spring at the free end
  • Beams with translational and torsional springs at one end.