Cargando…

Formulas for structural dynamics : tables, graphs, and solutions /

The objective of this text is to provide an up to date reference source of known solutions to a wide range of vibration problems found in beams, arches and frames. The solutions offered apply to bridges, highways, buildings, and tunnels.

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Karnovskii, I. A., (Igor Alekseevich) (Autor)
Otros Autores: Lebed, Olga I.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York, N.Y. : McGraw-Hill Education, [2001]
Edición:First edition.
Colección:McGraw-Hill's AccessEngineering.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000nam a2200000 i 4500
001 MGH_AEccn00213591
003 IN-ChSCO
005 20210416124538.0
006 m|||||||||||||||||
007 cr |n||||||||n
008 210416s2001||||nyu|||||o|||||||||||eng||
010 |z  00062451 
020 |a 0071367128 (print-ISBN) 
020 |a 0071450106 
020 |a 9780071367127 
035 |a (OCoLC)173314668 
040 |a IN-ChSCO  |b eng  |e rda 
041 0 |a eng 
050 4 |a TA654 
082 0 4 |a 624.1/7  |2 21 
100 1 |a Karnovskii, I. A.,  |q (Igor Alekseevich),  |e author. 
245 1 0 |a Formulas for structural dynamics :  |b tables, graphs, and solutions /  |c Igor A. Karnovsky, Olga I. Lebed. 
250 |a First edition. 
264 1 |a New York, N.Y. :  |b McGraw-Hill Education,  |c [2001] 
264 4 |c ?2001 
300 |a 1 online resource (xxiii, 535 pages) :  |b illustrations. 
336 |a text  |2 rdacontent 
337 |a computer  |2 rdamedia 
338 |a online resource  |2 rdacarrier 
490 1 |a McGraw-Hill's AccessEngineering 
500 |a Print version c2001. 
504 |a Includes bibliographical references and index. 
505 0 |a Transverse Vibration Equations -- Average values and resolving equations -- Fundamental theories and approaches -- Analysis Methods -- Reciprocal theorems -- Displacement computation techniques -- Analysis methods -- Fundamental Equations of Classical Beam Theory -- Mathematical models for transversal vibrations of uniform beams -- Boundary conditions -- Compatibility conditions -- Energy expressions -- Properties of eigenfunctions -- Orthogonal eigenfunctions in interval z[subscript 1] -- z[subscript 2] -- Mechanical models of elastic systems -- Models of materials -- Mechanical impedance of boundary conditions -- Fundamental functions of the vibrating beams -- Special Functions for the Dynamical Calculation of Beams and Frames -- Krylov-Duncan functions -- Dynamical reactions of massless elements with one lumped mass -- Dynamical reactions of beams with distributed masses -- Dynamical reactions of beams with distributed masses and one lumped mass -- Frequency functions (Hohenemser-Prager's functions) -- Displacement influence functions -- Bernoulli-Euler Uniform Beams with Classical Boundary Conditions -- Classical methods of analysis -- One-span beams -- One-span beams with overhang -- Fundamental integrals -- Love and Bernoulli-Euler beams, frequency equations and numerical results -- Bernoulli-Euler Uniform One-Span Beams with Elastic Supports -- Beams with elastic supports at both ends -- Beams with a translational spring at the free end -- Beams with translational and torsional springs at one end. 
520 0 |a The objective of this text is to provide an up to date reference source of known solutions to a wide range of vibration problems found in beams, arches and frames. The solutions offered apply to bridges, highways, buildings, and tunnels. 
530 |a Also available in print edition. 
533 |a Electronic reproduction.  |b New York, N.Y. :  |c McGraw Hill,   |d 2001.  |n Mode of access: World Wide Web.  |n System requirements: Web browser.  |n Access may be restricted to users at subscribing institutions. 
538 |a Mode of access: Internet via World Wide Web. 
545 0 |a Contributor biographical information:  |u http://www.loc.gov/catdir/bios/mh041/00062451.html 
546 |a In English. 
588 |a Description based on cover image and table of contents, viewed on April 26, 2007. 
650 0 |a Structural dynamics. 
650 0 |a Structural analysis (Engineering) 
650 0 |a Vibration. 
650 0 |a Girders. 
650 0 |a Girders  |x Mathematical models. 
650 0 |a Girders, Continuous. 
650 0 |a Structural frames. 
650 0 |a Rotational motion (Rigid dynamics) 
650 0 |a Structural stresses. 
650 0 |a Elasticity. 
650 0 |a Axial loads. 
650 0 |a Arches. 
650 0 |a Frames. 
655 0 |a Electronic books. 
700 1 |a Lebed, Olga I. 
740 0 2 |a Transverse vibration equations. 
740 0 2 |a Analysis methods. 
740 0 2 |a Fundamental equations of classical beam theory. 
740 0 2 |a Special functions for the dynamical calculation of beams and frames. 
740 0 2 |a Bernoulli-Euler uniform beams with classical boundary conditions. 
740 0 2 |a Bernoulli-Euler uniform one-span beams with elastic supports. 
740 0 2 |a Bernoulli-Euler beams with lumped and rotational masses. 
740 0 2 |a Bernoulli-Euler beams on elastic linear foundation. 
740 0 2 |a Bernoulli-Euler multispan beams. 
740 0 2 |a Prismatic beams under compressive and tensile axial loads. 
740 0 2 |a Bress-Timoshenko uniform prismatic beams. 
740 0 2 |a Non-uniform one-span beams. 
740 0 2 |a Optimal designed beams. 
740 0 2 |a Nonlinear transverse vibrations. 
740 0 2 |a Arches. 
740 0 2 |a Frames. 
776 0 |i Print version:   |t Formulas for structural dynamics : tables, graphs, and solutions.  |b First edition.  |d New York, N.Y. : McGraw-Hill Education, 2001  |w (OCoLC)44915823 
830 0 |a McGraw-Hill's AccessEngineering. 
856 4 0 |u https://accessengineeringlibrary.uam.elogim.com/content/book/9780071367127  |z Texto completo 
997 |a (c)2007 Cassidy Cataloguing Services, Inc.